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TECHNICAL REPORT SUMMARY

Contract Objective

The objective of this re<earch program is to investigate the
practical application of the finite element method to predicting the
behavior of underground openings in discontiruous rock, simply and
realistically. The scope of the program includes: (1) literature
surveys to evaluate the nonlinear, stress-dependent and anisotropic
properties of rock types and discontinuities, (2) the establishment
of modeling criteria for arbitrary excavation szquences, finite
element meshes, rock behavior and discontinuity behavior, (3) analyses
of underground openings to evaluate the effects of opening shape,
excavation sequence, initial stress values and orientations, material
properties and discontinuity orientativn and properties, (4) analyses
of the relative importance of the parameters investigated, and (5) a

case history example to demonstrate the applicability of the techniques

presented.

General Approach and Technical Results

The initial studies were oriented mainly toward establishing finite
element modeling criteria and parameters for use in subsequent analyses,
In Chapter 2, the modeling techniques for finite element analyses of
underground openings are presented. In this chapter, the salient features
and advantages of the finite element method are btriefly discussed and a .
generalized procedure for incremental excavation analysis is presented and ;
its general applicability is demonstrated. A runber of analyses were con-
ducted to establish minimum criteria for the dasign of finite element meshes
for underground openings and the results of these analyses are presented in ]
the form of several typical meshes for use in subsequent analyses., j

An extensive literature survey was conducted to evaluate the properties
of rock types for use in analyses and to examine the applicability for rock

of simple, practical stress-strain relationships recently proposed for soil.

The results of this study shuw that these relationships simulate the nonlinear,
stress-dependent behavior of rock quite well. The results of the literature

survey, which included 163 values under uniaxial test conditions and 115 values




under triaxial test conditions, were tabulated and analyzed. It was
found that for certain classes of rock, material properties varied
little and that nonlinearity and/or stress-dependency was sometimes a
minor factor in the behavior. Furthermore, this survey showed the
degree and importance of anisotropy of the material properties. Details
of the above are included in Chapter 3.

Chapter 4 presents the results of analyses which were conducted
to investigate the importance of material properties, initial stresses,
excavation operations and opening shapes on the final stresses and
displacements around underground openings in homogeneous rock masses.
The results of these analyses show that opening shape, initial stress
magnitude, initial stress orientation and gra' 'ty initial stresses, when
shallow, effect the resulting stresses and displacements considerably,
while the modulus, in a linear analysis, or the initial tangent stiffress
and stress-dependency in a nonlinear analysis, greatly effect the dis-
piacements. Poisson's ratio variations cause relatively small effects
on the stresses and displacements and all other parameters cause minor,
if any, variations. It should be noted that in all of these analyses,
representative strength parameters were used. The mobilized shear
strresses which resuited were small and subsequently no shear failures
occurred. Furthermore, tension zones were allowed to develop and no
analysis modifications were made to account for tension failure.

In Chapter 5 generalized analytical results are preseated which
evaluate the significance of discontinuity stiffness and orientation
on the resulting stresses and displacements around underground openings
in rock containing a single, prominent, planar discontinuity. The
results of these analyses show that the stress changes, i.e., load trans-
fer, become more substantial, tension zones increase, normal and shear
stresses on the discontinuity decrease and displacements increase as the
discontinuity becomes softer. These changes are very significant when
M (discontinuity rmodulus/rock modulus) goes from 1 to 10, are fairly
important when M gces from 10 to 100 and are small when M goes from 100
to 1000.
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When the planes of the discontinuity and the minimum principal
stress ccincide, a substantial reduction occurs in the dimensionless
o values, the dimensionless normal stresses on the discontinuity
are greatest, the discontinuity compression is greatest and the inward
displacements are least. When the planes of the discontinuity and the
maximum principal stress coincide, a substantial increase occurs in
the dimensionless ol values in the discontinuity with a decrease
adjacent to the discontinuity, the dimensionless shear stresses on the
discontinuity are greatest, the Aiscontinuity compressicn is least and
the inward displacements are greatest. When the discontinuity is at
45° to the initial principal stresses and as the discontinuity becomes
softer, the dimensionless 9 values in the discontinuity become equal
to one and the dimensionless 93 values in the discontinuity become equal
to K, the ratio of initial minor to major principal stresses. All other
changes are minor.

An extensive literature survey was conducted to evaluate the properties
of discontinuities which may be treated as thin (or one-dimensional) linear
features and to examine the applicability of a simple, practical stress-
deformation relationship for rock discontinuities. The results of this
study show that these relationships simulate the behavior quite well. The
results of the literature survey, including 32 different types of discon-
tinuities were tabulated and analyzed and representative values of the para-
meters were noted in Chapter 6. It was found that many of the parameters do
not vary over & very wide range.

Chapter 7 presents the results of analyses which were conducted to
evaluate the effect of variations in the normal and shecr stiffnesses of a one-
dimensional discontinuity on the resulting stresses and di:placements around
underground openings in rock containing a single prominent discontinuity.
The results of these analyses are similar to those obtained when 2 two-
dimensional discontinuity was analyzed. These results show that, as the
discontinuity becomes softer, the stress chanages (or load transfer) become
more substantial, tension zones increase, normal and shear stresses on the

discontinuity decrease and displacements of the opening increase.
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These conclusions can be further amplified since the stiffness of the

one-dimensional discontinuity is based upon independent normal and

shear stiffnesses. These studies show that the resulting stresses and
displacements are affected more by the normal stiffness than by the
shear stiffness, indicating that the stiffness component acting in the
same direction as the initial maximum principal stress is the most
important in determining the resulting behavior of the opening. These
studies further showed that the nonlinearity of the shear stiffness is
of minor importance but that the initial stiffness and stress-dependency
is significant in determining the stresses and displacements of the
opening.

To demonstrate the general applicability of the finite element
techniques discussed in the report, four types of finite element analyses
(1 step linear, 3 step linear, 3 step nonlinear and 3 step jointed)
were conducted for the Edward Hyatt Powe-plant beneath Oroville Dam.

Based upon the results of these analyses and comparisons with the measured
displacements of the powerplant opening, as shown in Chapter 8, it can be
said that all of the analyses can provide reasonable representations of

the observed behavior if the material properties can be adequately defined.
The 1 step linear analysis is limited because it cannot follow the ex-
cavation éequence. Both of the linear analyses are limited because the
selection of material properties hinges to a large degree on the availa-
bility of a large body of field data and a broad generalization of these
results. The nonlinear analysis appears to yield displacements somewhat
lower than those measured but the values for analysis are easily and in-
expensively obtained. The jointed analysis appears to yield the best
overall method of evaluating the performance of the opening. The rock
properties can be determined as easily as for the nonlinear analysis, but
field data is required to define the prominent discontinuities and their
properties. However, if this data is available, the resulting deformations,
stresses and stability of the rock mass may be evaluated with a reasonable degree

of accuracy.
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in summary it may be said that the analyses presented during the
course of this investigation show that the finite element method, coupled
with the analytical techniques for simulating the excavation sequence and
the nonlinear, stress-dependent behavior of the rock and the discontinuities,
can predict the behavior of underground openings in rock quite well.
This approach is well-suited for practical use because the material pro-
perties can be evaluated relatively easily and the field excavation sequence
can be followed directly.

For preliminary design and evaluation, the generalized results presented
may be used very effectively to evaluate the probable range of behavior for
a proposed opening. For final design and evaluation, the techniques presented
may be used to:
(1) predict stresses and displacements around openings in rock,
(2) assess zones of potential instability,
(3) aid in the sclection of instrument locations, and

(4) interpret the results obtained from field instrumentation.

DoD implications

The behavior of hardened facilities sited in the earth's crust depends
to a large extent on the physical properties of the site media and their
behavior. Survivability/Vulnerability studies for these facilities, employing
finite element analyses, require values for the physical properties as input
data. This report contains tabulations of these properties for both linear
and nonlinear rock and discontinuity behavior and also contains guidelines
which may be followed for modeling these facilities in finite element analyses.

_ This report also contains the results of a wide range of generalized analyses
for openings in homogeneous rock and in rock containing a single, prominent,
planar discontinuity. Since these analyses cover the most probable range of
stresses and material properties which may be encountered, they can provide
an effective reference for preliminary evaluation of an underground facility.
The applicability of the techniques and results presented are demonstrated

through a detailed case history analysis which show that these data would be

S sl e 20 N

very useful in the design of underground facilities.
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CHAPTER |
INTRODUCT I ON

Widespread use of instrumentation 1n many large underground openings
in rock during recent years has shown that substant;al movements may occur
even in the most carefully analyzed and desianed openings. Even though methods
of construction and instrumentation and techniques for predictina geologic
conditions are rapidly improving, the recent |literature contains numerous
case histories of well-engineered underaround openings in which substantial
movement and breakage occurred This movement and breakage becomes of special
significance when there is a loss of human life or of equipment, or when it
is found that redesign of the support system is necessary to accommodate the
rock mass behavior,

Sufficiently general theoretical methods fo- predicting the behavior of
underground openings in rock are virtually non-existent. For this reason,
engineers must rely upon experience and upon case histories when they design
and attempt to predict the behavior of a proposed opening. Therefore it is
desirable to develop a rational and practical procedure for predicting the
behavior of underground openings In rock Such a procedure could be used to:

(1) predict the stresses and movements 1n underground openings prior to
construction, (2) isolate potentially troublesome zones around a proposed
opening, (3) study the effects of various construction sequences on the behavior
of an opening, (4) help in selecting the types and locations of proposed
instruments and (5) aid in the interpretation of the results of instrumentation
studies.

The rapid development of large capacity, high speed, digital computers in
the last decade, coupled with powerful new methods of analysis such as the finite
elerent method, has made it feasible to investigate the complex behavior of
underground openings. Since the finite element method can be applied, at least
in principle, to any continuous system and to many classes of discontinuots
systems, it possesses the flexibility and generality needed to analyze the behavior
of underground openings.

Therefcre this study was initiated to Investigate the practical application
of the finite element method to predicting opening behavior, simply and realistically.
Approaches will be presented for simulatinag actual field construction sequences

and nonlinear material behavior within the basic context of the finite element




method. Furthermore, quidelines and results will be presented for realistically

modeling and treating the numerous interacting factors influencing the resulting

behavior of undergrcund openings during construction.

Geologic Factors

Rock masses are complex media composed of three distinct, yet interacting,
components which could be described as the rock types, rock structures and dis-
continuities. Rock types are numerous and range from sedimentary types, formed
by induration of sediments or chemical precipitation, to igneous types, formed
by cooling of the magma at or beneath the surface of the earth, to metamorphic
types, tormed by alteration of the sedimentary or igneous rocks by heat, pressure
or chemical action. Although genetically different, many rock types perform
slmilarly under load and therefore, from an engtneering standpoint, the physical
behavior of the rock must be considered. Under these conditions, it is found
that rock types range in behavior under load from linear, elastic and brittle
to nonlinear, inelastic and ductile, and from tsotropic to anisotropic, Any
method of analysis which models rock properties should have the capabilities
to model this range of properties in a relatively straightforward manner and
should be based upon parameters which can be obtained relatively easily in the
laboratory, Elastic, elastic-plastic, rheological, and other types of models
have shortcomings in this sense because they are based upon limited ranges of rock
behavior and/or upon parameters not readily obtainable in the laboratory.

Rock structural features are of two main types: bedding and folding. Features
of this type are mainly geometric and could readily be treated in finjte element
analyses by introducing the appropriate geometry and material properties of the
units involved. However, there are substantial problems i.volved in modeling these
features because the behavior of the bedding plane contacts must be considered
and the initial stress field must be known in the beds as well as in the folded
structures. Assuming that these problems can be surmounted, realistic models
can be established to treat these structures In analyses.

Discontinuities play a major role in the behavior of rock masses. These
features may range from random minute joints to larae planar features such as
faults, any of which may have nearly any orientation within the rock mass. Modeling
these discontinuities is a complex problem from both engineering and geolocic

standpoints. Geologically, the attitude, continuity, uniformity, thickness and
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repetitiveness of the discontinuities must be known. From an engineering
standpoint, the physica! behavior must be known. Recent studies (e.g., Goodman,
1969) along these lines indicate that discontinuities also have a wide range
in behavior under load. Analytical methods should be able to incorporate
these discontinuities and their physical properties to provide realistic
evaluations of the behavior of the rock masses.

Stress systems existing in rock masses further complicate any analytical
analyses because the stresses may he isotropic, transversely isotropic or
highly anisotropic. Furthermore the major principal stress may range from
horizontal to vertical and may or may not coincide with the orientatiun of
the discontinuities. In any case, it is imperative that the initial stresscs
be known and that analyses be capable of modeling the initial stress conditions

in the rock masses.

Construction Factors

When an underground opening is made in a rock mass, stress changes occur
which cause movements around the opening. The type and magnitude of stress
changes and movements which occur are not only a function of the geologic
conditions cited above, but are also a function of the sequence of construction
operations employed to make the opening. For example, a multiple drift sequence
may cause undesirable roof movements along a discontinuity in an opening while a
full face sequence might not because of an arching mechanism maintaining the
integrity of the roof. |If behavior such as this occurs, the support system
required will be substantially different and the extent of overbreak may differ
greatly. Becaute of these effects, it is important to be able to predict
beforehand the stresses and movements which may occur around an underground
opening and to correlate these with construction sequences to be employed in the
field.

Need For Simple, Practical Analytical Methods and Results

The various factors briefly discussed above indicate some of the more important
points to be considered in analyses of underground openings in rock. Numerous research
studies have been conducted during recent years along these lines, but a large number
of these studies have been ''technique oriented'' rather than ''result oriented'. Many
questions remain to be answered. Among those are: (1) How nonlinear and/or

anisotropic are rocks and how important is this in analyses? (2) How can the
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nonlinearity be treated in a relatively straightfo?ward manner? (3) How
important are discontinuities in the behavior of rock masses around under-
ground openings? (4) What are the properties of discontinuities? (5) How
important are the initial stress conditions i1n rock masses? and (6) How
important are construction sequences and opening shapes upon the resulting
behavior of an opening?
Advances have been made intu many of these areas, but few quidelines have

been established. Realistic mcdels, Viterature surveys and finite element
analyses can be employed to provide further guidelines. It is hoped that

through this study, guidelines may be provided in an effort to help to resolve

these questions.
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CHAPTER 2

FINITE ELEMENT MODELING TECHNIQUES

A number of procedures have been employed to perform analyses of
stresses and/or movements around underground openings in rock. These
have included closed-form elasticity solutions, finite difference
inumerical analyses, photoelastic analyses and finite element analyses.
Examples of the first three cen be referred to in basic Pock Mechanics
texts (e.g., Obert and Duvall, 1967), while examples of the fourth can be
found in both the International Rock Mechanics Congresses and in geo-
technical journals.

Although many interesting and useful results have been obtained using
each of these procedures, the finite element method of analysis is the most
general and useful. it may be used for analyses of stresses and movements
around underground openings in nonhomogeneous, discontinuous and anisotropic
rock and, with suitable techniques, may be used to obtain approximate solutions
for problems involving nonlinear material properties. Furthermore, the method
may be used for problems in which the initial stress conditions and construc-
tion operations should be considered. The important characteristics of the
finite element method as applied to analyses of underground openings in rock

and procedures for its use are described in subsequent sections of this chapter.

Characteristics of the Finite Element Method

Since its introduction by Turner et al. (1956),the finite element method
has been shown to be a very powerful procedure for stress analyses and has
been used for many different purposes. A number of excellent papers have
been published on this method (notably Clough, 1960, 1965, and Wilson, 1963)
as well as two textbooks (Zienkiewicz and Cheung, 1967 and Desai and Abel, 1971).
For analysis by the finite element method, the continuous body is
represented by a set of elements which are connected at their joints or nodal
points. On the basis of an assumed variation of strains within elements together
with the stress-strain characteristics of the element material, the stiffness of
each nodal point of each element is computed. For each nodal point in the system,

two equilibrium equations may be written expressing the nodal point forces in
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terms of the nodal point displacements and stiffnesses These equations are

solved to determine the unknown displacements. With the displacements of

all nodal points known, strains and stresses within each element may be computed.
Analyses of realistic systems commonly requires formu'lation and solution of
several hundred simultaneous equations, and the technique 1s only practical

when formulated for high-speed digital computers.

Various types of elements have been developed: these elements differ in
shape, number of nodal points, and assumed mode of strain variation within
elements. The element used in this study s a quadrilateral consisting of two
linear strain triangles (Felippa, 1966,. Within this element strains are
assumed to vary linearly, but to insure compatibility between elements, the
strains on the outside boundaries of the quadrilateral are assumed to be
constant. Studies by Felippa (1966) have shown that this element provides a
good combination of efficiency and accuracy over a wide range of loading conditions.

The analyses performed in this study are plane strain analyses of sections
normal to the axis of the underground opening This type of analysis represents
a close approximation of the actual strain conditions vwithin essentially
homogeneous rock masses and within rock masses containing beds and discontinuities
whose strike and dip are reasonably coincident with the trend and plunge of
the axis of the opening. For other cases, this type of analysis often wll]

provide useful and reasonably accurate approximations of the true behavior.

Nonlinear Material Behavior

Two types of stress-strain behavior, linear and nonlinear, have been employed
in the analyses to be conducted for this study. In the linear analyses, constant
and equal values of modulus and Poisson's ratio are assigned to all of tihe finite
elements modeling the rock mass. In the nonlinear analyses, the nonlinearity is
approximated by assigning modulus and Poisson's ratio values to each element
which are consistent with the stress values in the clement  The analyses are
performed using a scep-by-step or incremental analysis procedure i1n which successive
stages in the excavation of an opening are simulated. During each step or increment
the relationship between stress and strain 1s assumed to be linear; nonlinearity

is approximated in the analyses by appropriate chanages in the values of modulus

and Poisson's ratio during successive stages of the analyses. The procedures 3
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for determining the modulus and Poisson's ratio paramete-s required for use

in these analyses are described in a subsequent chapter of this report.

Incremental Excavation

Underground openings are excavated by a number of different procedures.
Small openings with simple shapes such as circles are commonly excavated in
one step either by tunnelling machines or by a single full face blast. Large
openings or cpenings with complex shapes such as a power station opening are
common ly excavated in several or more steps by multiple drift or head and
bench procedures. To realistically model these variable excavation procedures,
techniques must be employed in the analytical simulation which are capable
of following arbitrary construction sequences. Several procedures for
analytically simulating excavation operations have been proposed in recent
years (Goodman and Brown, 1963; Brown and King, 1966; Dunlop et al, 1568;
Duncan and Goodman, 1968; Chang and Duncan, 1970; and Ciough and Duncan, 1969).
All of these procedures have been developed primarily for surface excavations
in soil, but they have shown that excavation operations can be realistically
simulated in finite element analyses. The most aeneral of these procedures,
that of Clough and Duncan (1969), can be readily adapted for any type of
excavation operation.

The basic premise in these procedures is that the soil or rock is in
equilibrium and at rest in an initially stressed state. The excavation is
simulated by evaluating the stresses along the potential excavation surface,
computing the equivalent forces at the nodes of the finite elements along
the excavation surface, reversing the signs ofthe forces and then applying these
forces to the finite element mesh while reducing the modulus of the "removed"
elements to an insignificant value. The computed stresses, strains and dis-
placements are then added to the oriqinal values to obtain the stresses, strains
and displacements at the end of the excavation step. This procedure can then
be continued for any number of excavation steps such that an excavation can be
followed readily on a step-by-step basis.

This approach is in contrast to those commonly emplcyed in finite element
analyses of underground openings in which "gravity turn-on'' or relaxation

approaches are used. In the ''gravity turn-on' approach, two analys.s must be

conducted. These two analyses are conducied by first applying gravity to a finite
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element mesh without the opening and secondly applying gravity to a finlte

element mesh with the opening. The differences between the two analyses are

the stresses, strains and displacements caused by making the opening. This

approach suffers from several drawbacks. First, Goodman and Brown (1963), among
others cited previously, have shown that the resulting stresses are independent

of construction sequence only in homogeneous, Isotropic, linear elastic materials.
Second, Dunlop et al (1968) have shown that the step-by-step and ''"gravity turn-on'
analyses are equivalent only when the initial stresses are directly related by
Poisson's ratio, v, or 03 =1 ( T%})ol’ In which 03 and o, are the minimum and maximum
principal stresses, respectively, and o is the vertical stress. Third, the
''gravity turn-on'' analysis cannot model a construction sequence.

In the relaxation approach, also known as the residual stress approach,
the final geometry of the opening i1s usually established in the initial finjte
element mesh. The elements representing the surrounding rock mass are initially
stressed to some desired values which are subsequently relaxed to provide a
final equilibrium stress state around the opening. With this approach it is
difficult to follow a construction sequence simply and therefore to follow the
incremental changes of the rock properties as the opening is made. In addition,
the relaxation is controlled exclusively by the stresses existing in the elements
which are part of the rock mass remaining after the opening is excavated. The
stresses existing in the elements removea during excavation are usually not
considered.

On the other hand, the stress reversal approach considers the stresses
existing in the elements on both sides of a proposed excavation boundary at any
stage of excavation, and based upon these stresses evaluates the equivalent node
forces to be applied along the boundary to release the stresses actually
occurring along the boundary. Furthermore by following the stress changes at
each stage of excavation and subsequently changing the values of modulus and
Poisson's ratio in accordance with the changing stress values in the elements,
the actual nonlinear behavior of the rock mass can be followed on a more rational

basis. Details of this approach are given below,

Incremental Excavation Simulation

In the finite element method, stresses are common ly determined at either

the center of the elements or midway between two opposing nodal points, depending
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upon the type of elements used, but excavation boundaries pass between
elements. Therefore a technique must be empioyed to interpolate from the

center stresses to the nodal or boundary stresses before the nodal point

forces are evaluated. The approach outlined below is essentially the one used
by Clough and Duncan (1969), with only slight modification, and is repeated
here because the details of the method are not readily available in the
general literature.

To express the relationship between the known strcsses at the element
centers and the unknown stresses at the nodal points, a polynomial inter-

polation formula of the form given below may be used:
0 = apta, Xx+tayy+a, xy (2-1)

in which o is the interpolated nodal stress, x and y are the nodal point
coordinates and Ay Ay, a3 and a, are the interpolation coefficients. In

its most general form, the excavation of a auadrilateral element creates

four excavation boundaries and Equation 2-| is used to determine the stresses
at the four element nodes. By assuming a linear stress variation between the
nodal stress values, the complete strcss distribution 1s obtained around the
element, as shown in Fiaure 2-1. CEquivalent nodal point forces can then be
established from the boundary stress distribution.

To use Equation 2-1 to determine the stresses at a nodal point of an
excavated element, three sets of the interpolation coetficients are computed
(one each for the x, y and Xy stresses) using the known stresses in the four
elements surrounding the nodal point, one of which s the element to be excavated.

For a given stress o, these relationships can be expressed as:

~ -
o) : ) Y| X1V a)
0(2) = ] X, Yy Xo¥ o a, (2-2)
a(3) l X Y3 X3Y3 M
.
o(k) 1 X v &, Y =
N b 4 Ly "1}_}

in which o(i) is the stress in element 1. [quations 2-2 can be expressed in

symbolic form as follows:

{De} = lmq ia% (2-3) |

3
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Yid =y, -y, XJl = x, -x

MR
YJK=y, -y, XKJ = x, -x,
YKL=y, -y, XLK=x -x,
YLI =y -y, XIL=x -x

NOTE: ALL STRESSES AND GRADIENTS ASSUMED POSITIVE AS SHOWN

FIG.2-1 ARBITRARY QUADRILATERAL ELEMENT
AND BOUNDARY STRESS DISTRIBUTION
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in which i0e§ is the known element stress matrix, [m] is the known coordinate

matrix for the stress points and {a} is the unknown interpolation coefficient

matrix, which can be solved for as below:
fal= 1 -
la} [m ] {oe} (2-4)

The interpolation coefficients can then be used to cvaluate the nodal point

stresses, {On% , of the element to be excavated, as shown below:

{On\= [n] {a} (2-5)

or

{o = [n] [n] "{oeg (2-6)

in which [n] is the coordinate matrix for the |, J, K, L nodal points. Equation
2-6 therefore expresses the nodal point stresses in terms of the center stresses
of four adjacent elements.

Using the principle of virtual work and the stress distribution shown in
Figure 2-1, the equivalent horizontal *and vertical nodal point forces can be
established for each nodal point. For example, the vertical force at J can be

expressed as:

I [ (XJI) o + 2 ((XJI + XKJ )o + (XKJ)o
6 y Yy Yk (2-7)

Y1 2(YIJ YJK) - "+ (YJK
+ (Y1) lxyI + 2(YIJ + ) ny ( )1XYK]

This operation can then be repeated for all eight nodal point forces, resultino

in the following equations:

LA
tF,S
LFa8

or

(] [n] [m]™'§0 3

(0340 §

or
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in which {Fn} is the 8 x 1 nodal force matrix, [H] is the 8 x 12 boundary

geometry matrix,{on; is the 12 x 1 nodal stress matrix and [0] is the 8 x 12
resultant matrix relating the unknown nodal forces and the known element center
stresses.

The manner in which this approach is implemented is to specify the
nodal points along an excavation boundary and, for each nodal point, to

specify the four elements surrounding the nodal point. Usually two of these

elements are to be excavated and two are to remain as a portion of the rock mass.

However, situations arise where four elements do not surround a nodal point,
In this case, one should se'ect the four closest elements, as long as no
three of the four elements have centers which lie on a horizontal or vertical
line because then the matrix [m] becomes singular (zero determinant) and no
solution is possible.

To test the validity of this approach and to check whether modifications
were necessary, a simple excavation problem was considered of a laterally
restrained column, fixed at the base, in which the top layer was excavated.
This problem is shown in Figure 2-2. At the left of this figure is shown the
initial stress distribution. First the top ten elements were excavated in
one step ard the results were compared with the closed form solution. The
results were identical, as indicated to the right of the initial stress
distribution. Secondly a two step excavation sequence was conducted with
five elements being removed at each step. The resulting o and oy values are
shown in the respective elements and the values of Txy were in the range of
10-3 to 10-4. The correct values of o, and oy are shown on the left of the
mesh and the correct values of Txy should be zero. It can be seen that, except
for the Uy values of the two central elements in the top layer, the difference
between the finite element (FEM) solution and the correct closed-form solution
are about 2% or less. The other two elements have errors of approximately 12%.
In practice, a much finer finite element mesh would be used in this central
portion where there is a stress concentration after the first step, and
subsequently the error would be reduced to a few percent or less. All other
values are well within an acceptable error range, even though such a coarse
mesh was employed.

In an effort to determine whether the ac:uracy of the results could be .

improved, even with this coarse mesh, an analysis was conducted using double
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precision calculations. The results of this analysis were virtually identical,
although substantially more computer time, storage and accuracy was involved.
To see whether an improved interpc'ation function would improve the accuracy of
the results, Equation 2-1, the interpolation function, was expanded to six terms.
An analysis conducted with ti'e improved interpolation function showed, at best,
a very slight increase in accuracy. Considering the increase in input data
required for a six term interpolation function, it was felt that the improved
interpolation function was not warranted. These results indicate that only a
finer mesh around zones of stress concentration will lead to more accurate results.
Furthermore, during the course of investigating this problem, it was found
that the modulus of the excavated elements must be reduced to at least 10-6 times
their value prior to excavation. |If they are reduced by substantially lesser
amounts, the values computed for the remainina elements change for the worse.
As a more general example of the applicability of this approach, the
problem shown in Figure 2-3 was analyzed. One, two and three step excavation

sequences, as shown in Figure 2-4, were employed. The computed values of Oys ©

and Txy are shown for the elements resulting from the one and two step constrchion
sequence analyses; the results from the three Step sequence are essentially the same
as these values. This example was selected because it has a horizontal plane of
symmetry, sharp stress concentrations in the corners of the excavation and external
boundaries close to the excavation which will significantly affect the computed
stress values during a multiple step excavation sequence. As can be seen, the
computed stress values compare very closely in all respects. The largest differences
occur in the elements near the horizontal faces of the excavation where the stress
changes are large and the computed values are small and near the excavation corners
where the stress concentration is greatest. Ordinarily, 1n solving practical
problems, more elements of smaller size would be used and the correspondina in-

accuracies would be even smaller than in this example problem.

Finite Element Mesh Design

Solutions obtained by finite element analyses are only approximate solutions
since the method itself is based upon a physical approximation of the actual
system. Because of this, care must be exercised when a finite element mesh is

designed to ensure that the resuics are not being significantly altered because
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the mesh is not fine enough or the houndaries are not far enough away from
the opening. |f only one or two problems are to be investigated, perhaps five
hundred or more elements may be used to ensure an accurate icealization.
But when numerous problems are to be investigated, the number of elements
must be minimized because of the large cost of computer time and plotting
and interpreting e results obtained from the solution.
a) Mesh Configuration and Size Effects

To investigate the effects of mesh configuration and number of
elements in the mesh, a sample problem was analyzed of a rectangular opening
with a vertical plane of symmetry. This problem was selected because of the
stress concentrations which will occur in the corners. Three meshes were
used: the first, shown in Figure 2-5, was a coarse mesh containing 60 rectangular
elements of equal size; the second, shown in Figure 2-6, was a f{ne mesh
containing 120 square elements of equal size; and the third, shown in Figure
2-7, was a fine mesh containing 156 rectangular elements of unequal size with
the element size increasing away from the opening. |In each case, excavation was
conducted in a one step sequence. The initial values of I and Oy were equal to
1.0, the modulus was equal to 1000 and Poisson's ratio was equal to 0.25 for
all of the elements in the three different meshes. Any consistent units can be
applied to these values,

The results obtained from these three analyses are shown in Figures 2-8, 2-9
and 2-10. Contours of the vertical stress, oy, are shown in Figure 2-8. They
show that the coarse mesh indicates tensile stresses existing in the roof of the
opening and only a minor stress concentration near the corner of the opening.

On the other hand, the contours resulting from the fine and the fine irreqular
meshes do not show the roof tensile zones and do show larger stress concentrations
near the corner of the opening. Furthermore the contours are very consistent
with each other, the only difference being that the fine irregular mesh indicates
somewhat better the magnitude of the stress concentration near the corner of

the opening and the magnitude of the stress reduction mid-height of the opening
wall. Similar results are indicated for the horizontal stresses, O in Figure
2-9 and for the shear stresses, Txy’ in Figure 2-10. 1t is felt that the

results obtained from a finer mesh would exhibit stress contours nearly the same

as those from the fine and fine irregular meshes, but would probably define the

g L e r i e i sl Rhamame i, Lok o okl * Lo Ghile s faming it gl o il ki il e wl b ol ad SAlR ARl bmar o aliad

o e

[’




o e

rd

09

: "ONIN3dO
VINONVLO3Y H04 HS3IW LN3W3IT3 3LINI4 3SYV0D S-2°91d

SAN3W3T3
Q31VAVOX3 3HL

¥V SLN3IWN33
Q3HOLVH SS0dD

SiNIOd TVAON .4

SIN3IW313 09

- 18 -



"ONIN3dO
YYINONVLIO3IY HO4 HS3IW IN3IW3N3 3LINI4 3NId 9-¢'9ld

s e o pp— E— * R T N RN =—r——r—

atl 09 —

m2><mw” M ; w“w /////////////

wwnopwﬂ_mwmwmw /////////,////
SINIOd TWAON b //////////// 1

SIN3W313 o2l NN Y

NONCRORCRORT

<

AN

- 19 -




SIN3W3I3

Q31VAVIX3 3HL
34V SLN3W313
(Q3HOLVH -SS0HD

SINIOd TTYAON 2Z8i
SIN3W313 9Gi

‘ONINIJO HVINONVLO3IY
404 HS3IWN LIN3W3T3 3LINId ¥vIN93YHl 3N 2-2°914

IR NAE NN
.- /,..., // / // /
_ / ,,/,; I//f /// /
.w- I, ’ /,./{. ;/// // / / o
AUNAUNAS
// //_/ // .//f, b Vn_

-20 -




COARSE MESH — 1.
——10.
¢ 18

‘\”\ &

FINE MESH —

OI 02 04 06 j
FINE IRREGULAR MESH
1.0
o J

ALL RESULTS ARE SYMMETRICAL ABOUT THE CENTERLINE

FIG.2-8 CONTOURS OF ¢, AROUND EXAMPLE RECTANGULAR
OPENING , | SZ'I;EP EXCAVATION




3 \g' ﬁ—s ' —
E LD
]
; f 1 — 07

e LR
COARSE MESH S— \

—0.2 |

\

FINE MESH

FINE IRREGULAR MESH

¢

ALL RESULTS ARE SYMMETRICAL ABOUT THE CENTERLINE

FIG2-9 CONTOURS OF G, AROUND EXAMPLE

RECTANGULAR OPENING , | STEP EXCAVATION
- 22 -




b et

: X ) e )

’ s 5
~ COARSE MESH _/
: 5. BOKWN 0

\ -0.2 ) =0
\\ ruq
>
FINE MESH
. —— .__. Se SRR, - 1
-0l -02 -o]z
\ 03
FINE IRREGULAR MESH
Q itk —-..-—_—

ALL RESULTS ARE SYMMETRICAL. ABOUT THE CENTERLINE

FIG.2-10 CONTOURS OF 7T,, AROUND EXAMPLE

RECTANGULAR OPENING ,! STEP EXCAVATION |
= 23 S 3




3
3

maximum and minimum values a bit better. Therefore a reasonable criterion
for meshes would be that a minimum of 125 to 150 elements should suffice for
analyses of simple structures in homogeneous rock where there is a plane of

symmetry and only one-half of the system need be analyzed.

b) Boundary Location Effects

Since the finite element method involves a physical approximation of
the actual system, the location of the finite boundaries from the area of
interest will influence the results obtained in an analysis. This effect must
be minimized to ensure realistic results

To investigate the magnitude of the boundary effects, a number of
analyses were condur.ted with a circular opening i1n meshes with different
distances to the fixed boundary. The basic mesh employed is shown in Figure 2;I|.
Different systems were obtained by varying the boundary location in this basic
mesh. A total of five systems were analyzed with boundary locations varying
from 3 radii to 9 radii away from the center of the opening.

The results obtained from these analyses are shown in Figure 2-12 for the
nodal points along the face of the op2ning and for the innermost row of
elements along the face of the opening. It can readily be seen that the
boundary location is quite significant and that the greatest differences occur
between the vertical displacements at nodal point A (also equivalent to
horizontal displacements at B), the vertical stresses in element D (also
equivalent to horizontal stresses in element C) and the shear stresses midway
between elements C and D. To have a perfect comparison with the closed-form
theoretical solution, the boundaries of the finite element mesh would have to
be at infinity. Since this perfect comparison 1s 1mpossible, it was felt that
a mesh would be adequate if the largest difference between any one of the
computed or theoretical stresses or displacements, on or near the opening face,
was less than 10%.

By re-plotting the maximum points 1n Figure 2-12 in the form shown in

Figure 2-13, 1t can be seen that this 10% criterion is satisfied with a boundary

located 6 radii away from the center of the opening. It is interesting to note
that, for boundaries located closer to the opening, the largest percent
difference increases rapidly while, for boundaries located further from the

opening, the largest percent difference decreased slowly. Therefore the 6 radii

S



150 ELEMENTS
176 NODAL POINTS

E = 1000

V= 025

: : .0
e INITIAL STRESSES

A
P
:
b

H
5
A

P

FIG2-11  FINITE ELEMENT MESH FOR INVESTIGATION
OF BOUNDARY EFFECT




B
> #
Ow
=o
gﬁ
’_‘z’ : . THEORETICAL -
zﬁ = 2 2
=M
g0 : > :
- 1 .
gZ :
& | | -
qu L—l—-l--— e e e i i 1 1

o 0.002 0.004 0.006 0008 0.0i0 0012 0014

VERTICAL DISPLACEMENT

i D [ 1 T ————p—— = ER' ]
- 5R 4
4R = Ll
3R 2 .
THEQRETICAL N
C | i A 1 i i L
0 04 OB .2 1.6 2.0

VERTICAL STRESS

D = T L] T T

ELEMENT LOCATION AT I/ R FROM
OPENING FACE

SHEAR STRESS

FIG.2-12 COMPARISON OF THEORETICAL AND FEM
DISPLACEMENTS ALONG,AND STRESSES
NEAR, THE FACE OF A CIRCULAR OPENING

- 26 -




FEM VALUES /THEORETICAL VALUES

0.6

0.5

FIG.2-13

o - 5-& IN ELEMENT D AND G; IN ELEMENT <€
7 -~ &, MIDWAY BETWEEN ELEMENTS C AND D
[ - Y DISPLACEMENT AT NODAL POINT A AND

X DISPLACEMENT AT NODAL POINT B
A 1 | 1

3R 5R 7R SR IIR

LOCATION OF BOUNDARY OF FEM MESH

EFFECT OF EXTERNAL BOUNDARY
LOCATION ON ACCURACY OF FEM
SOLUTION

S o7

I13R

|
§

‘i
Prm —-~~>MLJ.WMM- e




criterion was adopted for all meshes to be employed in this investigation.

c) Representative Finite Element Meshes

In accordance with the criteria established above, three finite element
meshes were designed for use during the course of this investigation. These
three meshes are shown in Figures 2-14, 2-15 and 2-16 and they satisfy both the
element and boundary criteria. These meshes are for a circular opening, 6 meters
in diameter, a horseshoe opening, 5.5 meters high with a base width of 5.5 meters
(yielding an area similar to that of the circular opening) and a power station
opening, 30 meters high, 20 meters base width and 25 meters wide at the base
of the crown arch. These openings and their dimensions were selected because

they are both common and representative.
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CHAPTER 3

STRESS-STRAIN BEHAVIOR OF ROCK

The stress-strain behavior of many types of rock depends upon a number of

factors including density, porosity, structure, deqgree of weathering, type
5 and quality of cementing agent, stress history, duration of loading, confining

pressure, and shear stress. In many cases it may be possible to take account
of these factors by selecting rock specimens and testing conditions which simulate
the anticipated field conditions. But even when the rock specimens and test
conditions are carefully selected to duplicate field conditions, it is commonly
found that rock stress-strain behavior, over a wide range in stresses, is non-
linear and dependent upon the magnitude of confining pressure.

More often than not, only uniaxial compression tests are conducted and
the values of modulus and Poisson's ratio, for use in subsequent analyses, are
based upon the uniaxial results alone. Therefore the studies described in this
chapter were conducted: (1) to evaluate and summarize the available modulus and
Poisson's ratio data for various rock types under uniaxial test conditions,
(2) to examine the ranaz of applicability, for rocks, of recently proposed
methods of representing the nonlinear and stress-dependent values of modulus
and Poisson's ratio of soils, (3) to evaluate and summarize the available
nonlinear modulus and Poisson's ratio parameter values for various rock types
under triaxial test conditions, and (4) to provide guidelines for inter-

relating these parameters and using them in analyses.

Uniaxial Modulus and Poisson's Ratio Values

In an effort to evaluate the modulus and Poisson's ratio values for rock
types under uniaxial test conditions, an extensive literature survey was con-
ducted to isolate these data. The literature searched included the major rock
mechanics journals, the international rock mechanics congresses, the U.S. and
" Canadian rock mechanics symposia, major Ph.D. dissertations and the reports of U.S.

government agencies involved in rock mechanics work. While this survey cannot be

expected to be all-inclusive, it is felt that a very substantial percentage of
the available data are included. Furthermore, since data of this type are rarely
presented ir graphical form, it is unknown in most cases whether the modulus and

. A1 o or 273 o0
Poisson's ratio values are initial tangent values, secant values or 'best-fit' values.




Fortunately, many types of rocks exhibit nearly linear behavior under uniaxial
conditions to greater than 50% of failure, in which case the initial tangent,
secant and 'best-fit'" values are identical.

In all, data for uniaxial conditions alone were available for 154
different types of rocks; inclusion of several conditions for a given rock
type yielded a total of 163 values. These data were grouped together genetically
and were tabulated as shown in Tables 3-| through 3-5. Whenever sufficient data
were available, the full description, density, specific gravity, porosity,
modulus, Poisson's ratio, compressive strength and tensile strength were included.
As can be seen, all of these data were not available for all of the rock types.
On first impression it appears that there is a very wide scatter in the values
of modulus and Poisson's ratio for these rock types. Yet as shown in the
summary in Table 3-6, the range is not that great. Typically the maximum modulus
S KN/m? (11.6 x IO6 psi) to 100 x IO6 KN/m2
(14.5 x 106 psi) while the minimum modulus values are in the range of | x IO6

KN/m2  (0.14 x 10° psi) to 10 x 10
6

values are in the range of 80 x 10

KN/m2 (1.45 x IO6 psi). The average values
KN/m2 (2.9 x IO6 psi) to 60 x IO6KN/m2 (8.7 x IO6 psi)
6KN/m2 (6.3 x lo6 psi).
Similarly, the maximum values of Poisson's ratio vary from 0.32 to 0.73

are in the range of 20 x 10

while the overall average for the 163 tests is 43.4 x 10

(0.46 if the one dilatant value is excluded) while the minimum values vary from
0.02 to 0.09. The average values range only from 0.15 to 0.26 while the overall
average for the 141 tests is 0.20.

Little data were available on anisotropic properties under uniaxial conditions.

The available data on two sandstones (SCU-7 and SCU-8) and one shale (scu-24),
however, indicate that anisotropy is relatively unimportant. In fact, these
values are close enough so that they are well within the range of material

variation and test scatter.

Nonlinear Stress-Dependent Modulus Relationship

Recently, Duncan and Chang (1970) proposed a simple, practical stress-strain
relationship for soils and demonstrated its applicability in use for a deep
excavation in soil (Chang and Duncan, 1970). This relationship was formulated
from empirical nonlinear and stress-dependent relationships proposed previously
and only includes parameters readily obtainable from conventional laboratory shear

tests. It is interesting to note that work presently near completion at
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NUMBLR OESCRIPTION &w: :.3 5 NES Sg_ "_NEQZ.NEE. REFERENCE
St = vwlo x=c x
-8 oo™
'PU- 1 FGRANITE 2.63| 2.67] 1.6 | 52.1 [0.16 | 161.3 - Juoo (1969)
IPU~2 | GUADARRAMA GRAN|TE 2,60 - - 2 - 62.8 - SALAS (1968)
YPU-3 | FREMONT CANYON GRANITE
(HOMOGENEOUS , COARSE - GRA I NEO) - 2,621 0.8 | 64,1 [0.14 - 8.62 | NESBITT (1960)
P-4 | FREMONT CANYON GRANITE
(COAPSE-GRAINED, SLIGHTLY WEATHEREOD) - 2.61( 1.7 | 45.1 |o.10 - 2,62 | NESBITT (1960)
1PU-5 [ FREMONT CANYON GRANITE
(COARSE-GRA INEO) - 2.63] 1.0 | 73.8 {o0.15 - - NESBITT (1960)
1PU-6 | SALIDA GRANITE 2.64| - = 70.7 |0.18 | 324.0 - HOSKINS & HORINO (1969)
IPU-7  [MITIOIERI QUARRY PORHYRITIC GRANITE 2.68| 2.740 3.6 | 69.6 [0.24 91.7 - RUI2 (1966)
IPY-P | YALINHOS OUARRY GRANITE 2.56] 2.72| 3.2 | 65.8 [0.18 | 107.2 - RUI2 (1966)
- IPU-2 | CANTARL IRA OUARRY GRANITE 2.75( 2.81[ 2.2 | 6.1 fo.25 | 111.3 - RUI2 (1966)
IPU-10 | PICCICACCO QUARRY TOURMALINE GRANITE 2.62| 2.65{ 1.2 | 75.5 [0.16 | 127.1 - RUI2 (1966)
tPU=11 [ GRANITE - - - 70.3 [0.30 - - GEYER & MYUNG (1970)
IP9-12 [ GRANITE - - - 58 6 ]0.20 - - GEYER & MYUNG (1970)
I1PU~13 | GRANITE = o 3 71.0 |o.25 S - GEYER & MYUNG (1970)
IPI-1h | ALC NEVAOA TEST SITE GRANITE
{OENSE, COARSE-GRAINED , UNWEATHERED) 2.69[ 2.69( 0.3 | 73.8%0.22% [ w1117 | sTowe (1969)
tPU~15 ! GRANO COULEE GRANITE
(MASSIVE ,MEO I UM-GRATNED) = 2.63[ 1.6 | 32.5 Jo.14 | 148.8 - BALMER (1953)
IPU-16 | POLE HILL POWER PLANT GRANITE
(COARSE-GRAINED) - 2,631 1.0 | 26.2 [0.12 72.2 - BALMER (1953)
tPU-17 | GRANO COULEE GRANITE
(MEOIUM-GRAINED,SLIGHTLY ALTEREOD) - 2,61 2.4 8.96(0.11 64.8 - BALMER (1953)
\PU-18 | GRAND COULEE GRANITE
[MEOIUM-GRAINED, SLIGHTLY ALTEREQ) - 2,611 2.4 7.7910.13 56.9 - BALMER (1953)
12U=19 |POLE HILL PEGMATITE GRANITE
(VERY COARSL-GRAINEOD) - 2.62( 1.0 | 19.0 |o.09 48.8 - BALMER (1953)
1PU-20 |PIKES PLAK GRANITE n A
(COARSE-GRAINED, WEATHERED) 2.67| - - 33.47100. 37 88.91 3.93 [ MILLER (1965)
'PU-21 |PIKES PCAR GRANITE A A
(OENSE ,MEOIUM TO FINE-GRAINEO) 2,64 - - 70.6710.18" | 226.0]11.9 MILLER (1965)
17122 | RARRE GRANITE
{LENSC, MEOI UM- GRAINEO) 2.64 - | - | eritlo.3gf [ 19k.ufi0.7 | micer (1965)
4 IPU-23 |AEC NEVADA SITE QUART2 MON20NITE
i (IINWEATHEREO,UNCRACKE 0) 2.68) - - .7 1- 183.3 - COROING (1967)
1PU-24 |AEC NEVAOA SITE QUART2 MON20MITE
{UNWEATHERLO,SLIGHTLY CRACKEOD) 2.68| - - 4.4 | - 100.6 - COROING (1967)
P11 76 TAEC NEVADA SITE OUART2 MON20ONITE ;
b (SLIGHTLY ALTEREO) 2.66| - - 46,9 | - 71.0 - COROING (1967)
1P)-26 |GAROEN VALLEY 0AM NUART2 010RITE
| (COARTE-GRAINED,SLIGHTLY FRACTUREQ) - 2,501 2.7 | 25.5 [p.10 87.4 - BALMER (1953)
3 1°1y-27 lGI\uBRO o S o 75.8 [o.16 o - GEYER & MYUNG (1970)
, 1PU-28 [ GARBRO - - - 67.6 0,17 - - GEYER & MYUNG (1970)
1 1PU-2¢ [GABBRO - - - 84.1 |0.20 - - | GEYER & MYUNG (1970)
IPU-30 {MORROW POINT OAM PEGMATITE
{MASSI1YC,HARD, COARSE-GRAINED) - 2.641 0.9 | 18.5 {o.05 | 122.0 - USER (1965)
1PU-31 |PORPHYRY 2.35) 2.57(9.6 | 31.2 |o.2} 126.8 - JUno (1969)
IPU~32 [GRANO COULEL MON20OMITE PORPHYRY
(DENSE ,MASS IVE) T 2.58| 2.4 | 41,6 [0.18 | 147.8 - B/ MER (1953)
I"U-33 |GRANO COULEE MON20ONITE PORHYRY
(OENSE ,MASSIVE ,VERY HARD) - - = 42.9 lo.16 | 170.5 - BiCMLR (1963)
*PU-34 [CENAR CITY TONALITE
(FRIABLE ,MECIUM TO FINE-GRAINEO) - 2,601 4.9 {19.2 [0.17 [ 101.5( C.40 | SAUCIER (1969)
tPJ-35 |CASCATA OUARRY OIABASE 2,79 2.9416.0 | 69.0 [0.20 §155.8] - |RuI2 (1966)
17U-36 [CHAPADAD QUARRY O1ABASE 2.96] 3.04 3.0 | 91.2 Jo.24 | 152,3 - RUI2 (19606)
1P 0 [ IABASE - 2.91|0.6 | 74.8 lo.27 ' ~28.0 - Juoo (1969}
1P -5 IPALISADES OJABASE A g
! (DENSE,MASS IVE ,MEQIUM-GRA INEOD) 2.92| - - 81.87|0.28° . ..0fl1.4 MILLER (1965)
P70-3% [COGGINS OIABASE A A
1I'ENSE ,MASS | VE ,MEO| UM-GRAINEO) 3.06f - - 97.47 10.3R" | 321.0{11.9 MILLER (1965)
1MG=40 [FRENCH CREEK OIABASE A A
{DFNSE . MASSIVE,MEOI UM-GRAINFD) 3.06| - 3 99.47 |0.357 | 301.0[12.2 MILLER (1965)

Note: IKN/M® - 17100 BAR: 1/100 ATMOSPHERE; 1/100 TON/FT: 17100 Ka/cHes 1/7 Pst

A = Test Results at 50% of Failure

TABLE 3-1  UNIAXIAL STRESS-STRAIN PARAMETERS FOR
IGNEOUS (PLUTONIC) ROCK TYPES
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V=1 | JHPIA OAM RASALT
\CENSL) 2.92 (3.00] 2.7 | 73.0 |[0.2) | 104.8] - RUIZ (1966)
IVll-2 | BARRA BONITA OAM BASALT -
(OENSE) 2.82 |2.97{ 5.0 |61.0 |0.19 | 137.4 ) - RUIZ (1966)
IVU-3 [ JURUMIRIM DAM BASALT
(DENSE) 2.52 [2.71| 6.7 { 42.8 |0.16 | 133.0] - RUIZ (1966)
1UI-4 | MUSSA QUARRY BASALT
(OENSE) 2.50 [2.68] 6.9 | 440 |0.19 | 126.8] - RiIZ (1966)
IVIU-5 {1 AEC NEVADA SITE BASALT A A
(ENSE,FINE-GRAINEO,UNWEATHERED) 2,70 [2.83} 4.6 | 34.9"[0.32"| 148.0 [ 13.1 | sTomE {1969)
1VU-h | HOWARO PRAIRIE OAM BASALT
(VERY OENSE,FINE-GRAINEO) - 2.73| 3.1 | 61.8 |0.23 | 1940 = BALMER (1953)
tUH-7 | LOWER GRANITE BASALT A A
(N7.S7 IVE,COMPACT) 2.73 | - - 50.27 [0.247( 228.0 | 12.9 | MILLER (1965)
ten-R L LITILE GO0SE BASALT A A
("MASS IVE,COMPACT) 2.82 ] - 2 77.5°[0.277| 296.0 { 11.1 | MILLER (1965)
vn-o ! J?'M",ig‘s’?\v,c"ﬁé“” A a
VE,COMPACT TO VESICULAR) 2.87 1 - - 83.87 1 0.297| 355.0 | 14.5 | MILLER (1965)
IVI-10 | BASALT 2.66 12.86/10.2 | 38.8 |0.16 | 146.1 Juoo (1969)
1M Ny} PALISADES DAM HYPERSTHENE ANOESITE
(FINE-GRAINED,VERY HARD) - 2.57( 4.2 | 4h.3 10016 | 1306 - BALMER (1953)
1Vi-42 | AEC NEVAODA SITE TUFF A A
(RED TO REN-YELLOW,W=19.3:) 1.92 | - - 3.457] 0. 24 9.65 - COROING (1967)
Vii=1 g | AEC NEVADA SITE TUFF 3 A
(VELLOW, W:-17.6) 2,00 | - - 15.6" 1 0.09 35.3| - COROING (1967)
IVH=14 | \EC HEVADA SITE TUFF A A
WRED AND VELLOW, W=h.6.) 1.60 | - - 6.3470.15 22,31 - COROING (1967)
1vU=16 | AEC NEVADA SITE TUFF A 4
(FAIRLY WELOEO ASH, W=21.1.) 1.92 {2.39119.8 3.65°(0.19 P1.3 ) 1.17 | STOWE (1969)
IVH=16 {HOWARD PRAIRIE OAM LITHIC TUFF
(HIGHLY POROUS, FINE TO MEOIUM-GRAINED) - 1.45 |42, 1.25 [0.0> 3.65 - BALMEP. {1553)
V- 17 'NTS-E TUNNEL TUFF n A
(POROUS, CEMENTED) 1,61 | - - 5.037(0.21 2h.1 ) 1,45 | NILLER (1965)
"WEFD-1 | GASPAR CUARRY GRANULITE 2.58 (2,63 1.9 |41.7 [0.31 | 110.0] - RUIZ (1966)
Mpg-2 | PUARTZITE 2,70 |12.82 1.1 [62.9 lo.i6 | 292.0| - JUDO (1969)
RS JARAGUA HILL QUARTZITE 2.63 y2.67( 1.2 [s4.8 {0.36 | 226.0] - PUIZ (1966)
“UFU L T ZITE
<"RACTURED) - - - 76,4 10.10 - - GEYER € MYUNG (1970)
MU G | POARTZITE
|FRACTURED) - - - 644 lo0.22 - - GEYER & MYUNE (1970)
MHTI-H | "UARTZITE
(FINE-GRAINED) = S o 79.3 |0.17 - - LEEMAN (1966)
YNFIJ-7 | BARABDO QUARTZITE A A
{MASSIVE,BRITTLE,FINE-GRAINED) 2.62 | - - 88.47 lo.11" | 320.0 J11.0 [HMiLLER (1965)
NP J-¢ | MARRLE 2,69 (2.7510.9 |35.9 |o.24 | 102.3|11.8 |[uuoo (1969)
MYFL-0 | CAKTHAGE MARBLE 2.64 | - - 47.9 10.17 | 106.0 | - HOSKINS & HORING (1066
MNFIS- 10| TACONIC WHITE MARBLE h A
{MASSIVE,FINE-GRAINED) 2.7 | - - 47,97 |0.40 62.0 [ 1.17 |MILLER (1965)
“NT | 1] CHEROKEE MARBLE A A
(MEOIUM TO COARSE-GRAINEO) 2.71 | - o 55.8" [0.25 66.9 [ 1.79 |MILLER (1965)
MNFU-12| IMPERIAL OANBY MARBLE A A
(MASSIVE, MEOIUM-GRAINEO) 2.7 | - - {60.47 J0.34" | 64.8| 2.21 |MILLER (1965)
()
lote: TKN/MZ = 17100 BAR; 17100 ATHOSPHERE; 1/100 TON/FTZ; 17100 KG/CHo: 1/7 PS)

TABLE 3-2

A - Test Results at 50. of Fallure

UNIAXIAL STRESS-STRAIN PARAMETERS FOR
IGNEOUS (VOLCANIC) ROCK TYPES AND FOR
METAMORPHIC (NON-FOLIATED) ROCK TYPES
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MFU-1 EUCLIOES OA CUNHA OAM GNEISS 2.7512.79 1 1.4 78.4 | 0.22 132.4] - RUIZ (1966)
MFU-2 GRAMINHA DAM GNEISS 2.63 (2,73 | 3.7 76.3 | 0.27| 165.0) - RUIZ (1966)
MFU-3 C.T.A. QUARRY GNEISS 2.622.70| 3.1| 52,7 | 0.19}| 105.6| - RUIZ (1966)
MFU-4 JAGUARE QUARRY GNEISS 2.70 1z, 73| 1.1 78.3 1 o0.24| 137.1| - RUIZ (1966)
MFU-5 CAMARUE IR0 QUARRY GNE1SS 2,602,631 1.4] 48.8 | 0.40 93.6| - RUIZ (1966)
MFU-6 GNEI1SS - - |6kt | 0.9 - - GEYER & MYUNG (1970)
MFU-7 GNEISS - - - 172,48 0.19 - - GEYER & MYUNG (1970)
MFU-8 OWORSHAK GNE 1SS
(MEOIUM TO FINE-GRAINED) A A
(FOLIATION AT 45° TO CORE AXIS) 2,791 - - | 53.67| 0.34'} 162.0]6.89 | MILLER (1965)
MFU-9 0.E.R. QUARRY GRANITIC GNEISS 2,68 2.74 ) 2.2 k6.6 | 0.23 88.8| - RUIZ (1966)
MFU-10 | EUCLI10ES OA CUNHA OAM GRANITIC GNE!SS 2.65 (2,681 1.1 81.7 - 1510 - RUIZ (1966)
MFU-11 | MONTEZUMA TUNNEL OIORITE GNEISS
(HARO,MEOIUM TO COARSE=-GRAINEO) - 2.86 | 0.4] 68,4 | 0.09 Bh.51 - BALMER (1953)
MFU-12 [ MIGMATITE - - - |80.0 1 0.22 - - GEYER & MYUNG (1970)
MFU-13 | MIGMATITE - - - | 80.0 | 0.17 - - GEYER & MYUNG (1970)
lMru-lla SCHIST 2.7412.80 | 3.7134.9 | 0.1 50.31 - Juob (1969)
MFU-15 | FREMONT CANYON SCHIST
(OENSE,VERY FINE-GRAINEO) o - - |69.0{ 0.19 - 17,4 NESBITT (1960)
MFU-16 | LUTHER FALLS SCHIST
(MICACEQUS FOLIATION) A A
-16a| (FOLIATION 1 TO CORE AXIS) 2,81} - = [20.7,] 0.3} 55.2]0.55 |MILLER (1965)
-16b] (FOLIATION // TO CORE AXIS) 2.82( - - |58.1"] 0.18 82.7]65.24
MFU-17 | MORROW POINT OAM QUARTZ MICA AUGEN SCHIST
(HARO,MEO1UM-GRAINEO) - 2.72 | 0.7]28.5 1 0.06) 107.5{ - USBR (1965)
MFU-18 | MORROW POINT DAM QUARTZ MICA SCHIST
(MEOIUM TO COARSE-GRAINEO) - 2.74 | 2.0 8.20| 0.0k bhoo| - USBR (1965)
MFU-19 | MORROW POINT OAM MUSCOVITE BIOTITE SCHIST
(COARSE-GRAINEO) - 2.83 | 1.7] 5.93| 0.02 2k.9 - USBR (1965)
MFU-20 | MONTEZUMA TUNNEL BI1OTITE SCHIST
(HARO,MIXTURE OF SCHIST & PEGMATITE) - 2.70 | 0.8| 39.8 [ 0.05 68.1 ] - BALMER (1963}
MFU-21 | MONTEZUMA TUNNEL BIOTITE-CHLORITE SCHIST
(HARD, FINE-GRAINEO) - 2.7 | 0.8]66.9 | 0.18 78.3( - BALMER (1953)
MFU-22 | MONTEZUMA TUNNEL BIOTITE-SILLIMANITE SCHIST
(MOOERATELY HARO,MEOIUM TO FINE-GRAINEO,
SLIGHTLY ALTEREO) - 2.72 | t.0]21.2 - 21,01 - BALMER (1953)
MFU-23 | MONTEZUMA TUNNEL BIOTITE-SILLIMANITE SCHIST
(SOFT TO MOOERATELY HARO,NUARTZ INJECTIONS) - 2.7 | 2.8]23.3 | 0.09 19.9 | - BALMER (1953)
MFU-24 | SLY PARK OAM NUARTZOSE SERICITE SCHIST
(POROUS ,MEDIUM-GRAINED) - 2,47 (1.4 8,62} 0.06 15.0 | - BALMER (1953)
MFU-25 | MORROW POINT OAM HORNBLENDE SCHIST
(MEOIUM-GRAINEO) - 2,74 L o.4]61.0 | 0.1k ] 198.7 - USBR (1965)
MFU-26 | SLY PARK DAM GRAPHITIC PHYLLITE
(POROUS, FINE-GRAIMEO,SLIGHTLY TO MOOERATELY
WEATHEREO) S 2.35 |15.3| 9.45| - 6.69 - BALMER (1953)
MFU-27 | SLY PARK OAM QUARTZ20SE PHYLLITE
(POROUS,FINE-GRAINEQ,SL IGHTLY WEATHEREO) - 2.18 [22.4| 6.62]0.02 9,38 - BALMER (1953)
MFU-28 ' SLY PARK OAM SERICITE PHYLLITE
(POROUS, FINE=-GRAINEO,MOOERATELY WEATHEREO)
Ll (FOLIATION AT 30° TO CORE AXIS) = 2,34 N17.4(17.3 - 9.80] - BALMER (1953)
D il

TABLE 3-3

Note: IKN/MZ = 17100 BAR; 1/100 ATMOSPHERE; 1/100 TON/FTZ; 1/100 KG/CH%; 1/7 PSI
A - Test Results at 50% of Fallure

UNIAXIAL STRESS-STRAIN PARAMETERS FOR

METAMORPHIC (FOLIATED) ROCK TYPES
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1IUMBER RN SRS RN CEN
DCSCRIPTION oclh w O\L 5 o\:‘ REFERENCE
Scu-1 BRECCIA 2,66 [2.70 |14.2 | 14,7 - 110.3 - Jubr (1969)
SCU-2 CONGLOMCRATE - 2,72 | - 13.0 | 0.15 | 226.0 - Juwo (1969)
SCU-3 | SANDSTONE 2.22 12.32 20,4 | 5.0 Jo.k | 62.7 | 1.93 | subd (1369)
SCU-4 | LDNGMONT SANDSTDHE 235 | - |- 31.2 [D.08 ] 169.8 | - | HOSKINS 5 HORINO (1969)
SCu-5 BD1UC/ TU SANDSTONE 2.32 j2.44 | 5.0 | 22.8 | D. 1 76.1 - RUIZ (1966)
SCU-6a | BUNTER SANDSTONE = - 6.6 | 12,1 Jo20| - . MDRGENSTERN & PHUKAN (1966)
-6b - |- hao |26 o2 | - o
-6c = - fmw.o 230 |05 ] - o
G - - sz |zs |oag] - -
SCU-7 | W.A.C. BENNETT N SANDSTONE
(HARD, CHERTY)
-7a (ALONG STRIKE) - - - 7.9 - 136.5 - IMRIE & JORY (1968)
-7b | (ALONG DIP) o he Ml 6.5 | - 133.0 | -
-7c | (NDRMAL TO BEDDING) - - - 5.9 | - 1220 | -
SCU-8 | W.A.C. BENNETT N5 SANDSTONE
(MARD , CHERTY)
-3a | (ALDNG STRIKE) = = | = 17.2 | - 1n3.o | - IMRIE & JORY (1968)
-8b (ALONG DIP) - - - 15.2 - 129.6 -
-8c | (NORMAL TO BEDDING) = s |l 17.9 | - 0.0 | -
SCU-9 | BEREA SANDSTONE .
(MASSIVE, FINE-GRAINED, SLIGHTLY PDRDUS) 208 - | - 19.3% 1 0,388 73.8 | 1.17 | miLLer (1965)
SCU-10 | CRAB DRCHARD SANDSTDNE A A
(DCNSE, FINE~GRAINED) 20530 | I 39.2° [ 0.46" 2160 | 8.14 | MiLLER (1965)
SCU-11 | NAVAJD SANDSTONE
(POROUS ,MEDIUN TD FINE-GRAINED) 200 | -« | - 15.3% 0.3 2w | 124 | miLter (1965)
SCU-12 | ALCOVA POMER PLANT TENSLEEP SANDSTDNE
(PDRDUS,, FINE-GRAINED) - {233 0138 |19 oo | 72.4 BALMER (1953)
SCU-13 | SILTSTDNE 2.15 |2.67 [16.6 | 32.8 [o0.23 | 108.2 | - | suop (1963)
i SCU-1h | HACKENSACK SILTSTDNE x N
| (DENSE ,MASS IVE,CLAYEY, CEMENTED) 2.59 (= [ - [26.2%0.22% 122.7 | 2.96 | miLLER (1965)
SCU-15 | MDNTICELLO DAM SILTSTONE
(POROUS , FINE-GRAINED) - |2.50 {10.3 [ 13.1 o009 | 240 | - BALMER (1953)
SCU-16 | GRAYWACKE - (2461 9.2 | 2001 [o0.08 | 79.3| - | supp (1969)
SCU-17 | SUBGRAYWACKE - |2.66 | 3.3 | 33.1 |o.08| 800 - JuDD (1969)
SCU-18 | MDNTICELLO DAM SUBGRAYWACKE
' (POROUS ,MASS | VE, COARSE -GRAINED) - 2.4 |10.3 [ 1.4 o.05 | su.s5 | - BALMER (1953)
; SCU-19 | MONTICELLD DAM SUBGRAYWACKE
? (POROUS , CDARSE-GRAINED, SL I GHTLY WEATHERED) - |2.49 | 9.7 | 9.52/0.08] 30.6 | - BALMER (1953)
[SCU-20 | MONTICELLO DAM SUBGRAYWACKE
' (PORDUS ,MASS IVE,, FINC-GRA INED) = 2.6 Ju2o0 |k Joo7| w83 - BALMER (1953)
SCU-21 | MONTICELLD DAM SUBGRAYWACKE
‘ (PDRDUS, MASS I VE , MED | UM-GRA INED) - 2w s 2.3 [o0e | w88 | - BALMER (1953)
: SCU-22 | MDNTICELLD DAM SUBGRAYWACKE
1 (PDRDUS ,MASS I VE, MEDIUM TO CDARSE-GRAINED) - |ab9 97| 9.93|0.05| s0.7 | - BALMCR (1953)
SCU-23 | SHALE 2.2) 12,59 [16.2 | 21.9° [ 0.18 | 67.6 | 2.41 | Jubp (1963)
SCU-2h | W.A.C. BENNETT N5 SHALE
| “(SILTY,RELATIVELY SOFT)
-2ha| (ALDNG STRIKE) = - - 38.6 | - TR IMRIE & JORY (1968)
-24b | (ALDNG DIP) - [BE 30.4 | - 81.3 | -
-2hc | (NDRMAL TD BEDDING) e il ||ec 36.5 | - 2.3 | -
SCU-25 | MARBLE CANYDN DAM CALCAREOUS SHALE
' (HARD , FINE~GRA I NED) - 267|018 13,7 {o.03] 3.0 - BALMER (1953)
SCU-26 | MARBLE CANYON DAM QUARTZOSE SHALE
3 (HARD,, LAMINATED) - |2.69| 6.6 | 15.0 | 0.07 | 122.5 | - BALMER (1953)
Note: IKN/M = 1/100 BAR; 1/10D ATHDSPHERE; 17100 TON/EY2; 17100 Ke/chZ; 177 PSI

TABLE 3-4

A - Test Results at 503 of Fallure

SEDIMENTARY (CLASTIC) ROCK TYPES
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UNIAXIAL STRESS-STRAIN PARAMETERS FOR
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SCHU-1 SOLENHOFEN LIMESTONE n h
(MASSIVE ,VERY FINE-GRAINED) 2.62 - 63.8" 10.29" | 245.0 MILLER (1965)
SCHU-2 L IMESTONE 2.67 11,5 34,7 |0.22 75.1 Jupb (1969)
SCHU-3 KANSAS LIMESTONE 2,10 - 25.7 }o0.20 50.6 MOSKINS & MORINO (1969)
SCHU-bL TAQUARUSSU QUARRY LIMESTONE 2,74 2.0 |82.4 |0.33 90.7 RUIZ (1966)
SCHU-5 PERUS OUARRY L IMESTONE 2,72 1.2 1644 [0.23 62.9 RUIZ (1969)
SCHU-6 PIRAPORINHA QUARRY LIMESTONE 2,71 0. 0.28 67.6 RUIZ (1969)
SCHU-7 AEC NEVADA SITE LIMESTONE A
(DENSE,FINE-GRAINED, STYLOLITE SEAMS) 2.70 0.26 77.1 STOWE (1969)
SCHU-8 BEDFORO LIMESTONE h
(POROUS,00LITIC) 2.21 0.29 51.0 MILLER (1965)
SCHU-9 0ZARK TAVERNALLE LIMESTONE i
(DENSE ,FINE-GRAINEOQ) 2.65 0.30 97.9 MILLER (1965)
SCHU-10 | MARBLE CANYON DAM LIMESTONE
(FINE-GRAINED,SLIGHTLY POROUS) - 0.25 80.4 BALMER (1953)
SCHU-11 | MARBLE CANYON OAM LIMESTONE
(MEDIUM-GRAINED ,MODERATELY POROUS) - 0.20 | 127.4 BALMER (1953)
SCHU-12 | MARBLE CANYON DAM LIMESTONE
(HIGHLY POROUS) = 0.19 | 133.2 BALMER (1953)
SCHU-13 | MARBLE CANYON DAM CMALCEDONIC LIMESTONE
! (HARD,FINE-GRA INED) - 0.21 [107.4 BALMER (1953)
SCHU-14 | MARBLE CANYON DAM OOLITIC LIMESTONE
(HARD,MEDIUM TO FINE-GRAINED) - 0.18 99.4 BALMER (1953)
SCHU-15 | MARBLE CANYON DAM STYLOLITIC LIMESTONE
(MEDIUM TO FINE-GRAINEO) - 0.16 79.6 BALMER (1953)
SCHU-16 | ENIWETOK REEF BRECCIA LIMESTONE
(HARD,VERY POROUS,FINE-GRAINED) - 0.16 34,2 BALMER (1953)
SCHU-17 © ENIWETOK REEF BRECCIA LIMESTONE
! (VERY POROUS,FRIABLE) - 0.12 5.93 BALMER (1953)
SCHU-18 , ENIWETOK REEF HEAD LIMESTONE
(VERY POROUS,FRIABLE) - 0.24 21.2 - BALMER (1953)
SCHU-19  MARLSTOHE - 0.04 | 1144 - JuoD (1969)
SCHU-20 | DOLOMITE - - 96.5 - Juoo (1969)
i SCHU-21 | CACUPE QUARRY DOLOMITE 2.83 0.14 | 102.9 - RUIZ (1966)
1SCHU-22 | DOLOMITE - 0.30 - - GEYER & MYUNG (1970)
|SCHU-23 | ONEOTA DOLOMITE A
| (POROUS ,MASSIVE ,FINE-GRAINEQ) 2.45 - 0.3k 86.9 MILLER (1965)
>CHU-24 | LOCKPORT DOLOMITE
(POROUS ,MASS1VE ,GRANULAR,VERY FINE- A
GRAINED) 2.58 0.3k 90.3 MILLER (1965)
SCHU-25 | BONNE TERRE DOLOMITE A
, (DENSE,FINE-GRAINED) 2.6k - 0.357 { 151.7 . MILLER (1965)
SCHII-26 | ANHYCRITE - - 0.27 - - GEYER & MYUNG (1970)
ySCHU-27 | DOMINION ROCK SALT - - 35.6 - MUIR & COCMRANE (1966)
SCHU-28 | DOMINION ROCK SALT - - - 157.0 - MUIR & COCHRANE (1966)
SCHU-29 | DOMINION ROCK SALT - - - 103.7 - MUIR & COCMRANE (1966)
,SCHU-30 | DIAMONO CRYSTAL ROCK SALT A
L (MASSIVE,COARSE=GRAINEQ) [£:16 0.73 21,4 MILLER (1965)
Hote:  TKN/ME = 1/100 BAR; 1/100 ATMOSPHERE; 1/100 T0N/FT2; 1/100 PSI

TABLE 3-5

A - Test Results at 50% of Fallure

UNIAXIAL STRESS-STRAIN PARAMETERS FOR

SEDIMENTARY (CHEMICAL) ROCK TYPES




ROCK TYPE 1GNEOUS METAMORPHIC SEDIMENTARY
ALL
PARAMETER PLUTONIC VOLCANIC NON-FOLIATEO | FOLIATED CLASTIC CHEMICAL
NO. VALUES 20 14 9 1 10 14 78
QENSITY HAX IMUM 3.06 2.92 2.7 2.82 2,66 2.83 3.06
(aH/cH3) MINIHUM 2.35 1.60 2.58 2.60 2.02 2.10 1.60
AVERAGE 2.71 2.40 2.67 2.71 2,32 2,56 2,57
NO. VALUES 22 10 4 21 17 20 94
SPECIFIC MAX | MUM 3.04 3.00 2,82 2,86 2,72 2.90 3.04
CRAVITY MINIMUM 2.50 1.45 2.63 2,18 2,32 1.79 1.45
AVERAGE 2.68 2,61 2.72 2.66 2.53 2.56 2.62
NO. VALUES 22 10 4 21 20 17 94
NOROSNTY MAX | MUM 9.6 42.5 1.9 22.4 21.4 36.0 42.5
MINIMUM 0.3 2,7 0.9 0.4 1.8 0.3 0.3
AVERAGE 2.3 10.6 1.3 4.5 1.3 8.3 6.6
ROAFRESENIE NO. VALUES 31 17 9 24 31 28 140
STRENGTH MAX ! MUM 324.0 355.0 320.0 198.7 226.0 245.0 355.0
(kn/mZx1073) HINIHUM 48.8 3.65 62.0 6.69 24,1 5.93 3.65
AVERAGE 146. 4 123.9 150.0 79.6 96.3 . 88.1 109.7
NO. VALUES 10 6 5 4 6 8 39
TENSILE
STRENGTH MAX I MUM 12.2 14,5 11.8 17.4 8.14 9,34 17,4
(KN/szlo'3) MINIMUM 2.6 1.17 1.17 0.55 1.17 0.83 0.55 :
AVERAGE 9.1 9.0 5.6 7.5 3.0 3.9 6.5 3
ELASTIC HO. VALUES 40 17 12 29 35 30 163
MOOULUS, E MAX | MUM 99.4 83.8 88.4 81.7 39.2 90.0 99.4
(xti/m2x1078) | minimm 7.8 1.2 35.9 5.9 5.0 U6 1.2
AVERAGE 56.6 38.1 59.6 47.0 19.3 k7.0 43.4
NO. VALUES 36 17 12 25 25 26 141
OISR MAX | MUM 0.39 0.32 0.40 0.40 0.46 0.73 0.73
MINIMUM 0.05 0.09 0.08 0.02 0.03 0.04 0.02
RATIO, v
AVERAGE 0.20 0.20 0.21 0.17 vl 0.26 0.20 i

Note: | KN/MZ = 17100 BAR; 17100 ATMOSPHERE; 1/100 TON/FT2; 17100 Ka/CHZ: 1/7 PSI

TABLE 3-6  SUMMARY OF UNIAXIAL STRESS-STRAIN PARAMETERS
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Duke University (Clough, 1971) has shown that this relationship very well

models the stress-strain behavior of soils over virtually all stress and
strain conditions to at least about 75% of failure. On the other hand,
this same study showed that many other stress-strain relationships (i.e.,
non-linear elastic, elasto -plastic, empirical, etc.) had limited range of
applicability. Justification for these conclusions was obtained from
controlled triaxial and plane strain shear tests, numerical analyses and
X-ray observations of actual material behavior during shear. Since soil
and rock usually has similar stress-strain characteristics, it is expected
that the same conclusions would hold for rock as well as for soil. In the
following sections, this stress-strain relationship is reviewed and its

applicability to rock is discussed.

a) Nonlinearity

The nonlinearity of the stress-strain curves was simulated using a
hyperbolic relationship proposed by Kondner and his co-workers (Kondner, 1963;
Kondner and Zelasko, 1963a and 1963b; Kondner and Horner, 1965). 1in their

approach, a nonlinear stress-strain curve is represented by a hyperbola of the

form:

€
a

o) = 03) = o35, (3-1)

in which (o] - 03) is the deviator stress, €, is the axial strain, and a and b E
are parameters whose values are determined empirically. A< shown in Figure 3-1,
these parameters are the reciprocals of the initial slope (initial tangent
modulus) and the asymptote to the stress-strain curve.

For purposes of determining the values of the parameters a and b 't is

convenient to transform Equation 3-1 into the following linear form:

y =3 + bea (3-2)

i

As shown in Figure 3-1, when the relationship is represented in this trans-

T I

formed manner, the parameters a and b are, respectively, the intercept and

the slope of the straight line.

The value of the asymptotic deviator stress, (c] & 03L1t’ is always somewhat

larger than the compressive strength or deviator stress at failure, (c] -0

Gl
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DEVIATOR STRESS, (o -a)

TYPICAL HYPERBOLIC STRESS-STRAIN CURVE

AXIAL STRAIN/DEVIATOR STRESS, €/(o;-07)

AXIAL STRAIN, ¢,

TRANSFORMED LINEAR HYPERBOLIC PLOT

FIG. 3-1I

'

AXIAL STRAIN, ¢,

TYPICAL HYPERBOLIC STRESS-STRAIN
CURVE AND TRANSIFORMED LINFAR

HYPERBOLIC PLOT.




These two values may be related as follows:

(o

Ty A e )8 (3-3)

in which Rf is a correlation factor called the ''failure ratio', which always

has a value less than unity. The value of Rf, which is determined empirically

by comparing the values of (c] = 03)f and (c] - O3th’ is a measure of how nearly
the shape of the stress-strain curve may be approximated by a hyperbola. Values
of Rf equal to unity correspond to stress-strain curves of precisely hyperbolic
shape, and smaller values to stress-strain curves of other shapes. Values of

Rf for a variety of different rocks have been found to be essentially independent
of confining pressure.

The curves shown in Figure 3-2 demonstrate the usefuliness of this simple
hyperbolic representation for Cedar City Tonalite. The average value of the
failure ratio for this rock is very low (0.32) indicating that the actual stress-
strain curves are not close to hyperbolic in shape. The hyperbolic curves,
shown as dotted lines in Figure 3-2, would continue to much greater values of
deviator stress than the actual compressive strength. As further shown in Figure
3-2, the hyperbolic representation is not employed for values of deviator
stress exceeding the compressive strength; at larger strains, the curves are
represented by nearly horizontal straight lines. Because of numerical
difficulties it is not possible at ihe present time to simulate a reduction
in deviator stress beyond the peak in incremental finite element analyses of
the type described herein. However, it may be noted that the hyperbolae and
straight lines provide a reasonable approximation of the stress-strain curves for
the tonalite even though the failure ratio is very low. Studies of the stress-
strain curves for 115 different rock types and test orientations described in
subsequent sections have demonstrated the suitability of this relationship for

a wide range of rock types.

b) Stress-Dependency

The stress-strain characteristics of rock commonly depends on the
confining pressure. As shown in Figure 3-2, the stee; -ess of the initial
portion of the stress-strain curves and the strength values both jncrease with
increasing magnitude of the confining pressure employed in the tests. The

influence of confining pressure on the stress-strain characteristics may be

incorporated in the stress-strain relationship by relating the values of the

- 42 -
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initial tangent modulus «nd strength with confining pressure.
The variation of initial tangent modulus with confining pressure may
be expressed very conveniently in the following form, suggested by Janbu (1963):

o]

n
£, = Kp_ (TZ) (3-4)

in which Ei is the initial tangent modulus, o, is the minimum principal

stress, p_ is atmospheric pressure expressed ?n the same units as Ei and

03, K is the modulus nunber, and n is the exponent determining the rate of
variation of Ei with 03; both K and n are pure numbers. Values of the
parameters K and n may be determined readily from the results of & series

of tests by plotting the values of E‘ against 03 On log-log scales and fitting
a straight line to the data, as shown in Figure 3-3. The data shown in

Figure 3-3 represent tests conducted on three different types of rock and in
each case these data can be represented to a reasonable degree of accuracy by
a straight line on a log-log plot.

The relationship between compressive strength and confining pressure

may be expressed in terms of the Mohr-Coulomb failure criterion as follows:

2c cos¢ + 203 sing
(o) = 05)¢ = (3-5)
1 - sing

in which ¢ and ¢ are the Mohi-Coulomb strength parameters.
Equations 3~4 and 3-5,in combination with the previously described
hyperbolic relationship, provide a means for relating stress to strain by

means of the 5 parameters, K, n, c, ¢, and Rf.

c) Tangent Modulus

The nonlinear, stress-dependent stress-strain relationship discussed
previously may be used very conveniently in incremental stress analyses,
because it is possible to determine from this relationship the value of
tangent modulus corresponding to any point on the stress-strain curve. If the
value of o, is assumed to be constant, the tangent modulus may be expressed

3

in the form: 3(01 _03)

B ————— (3-6)
3 €

- qq -
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Performing the indicated differentiation on Equation 3-1 and substituting

the parameters discussed previously, the tangent modulus may be expressed as:

£
E, = 5 (3-7)
1 Rfe
M CTIREA P

Although this expression for the tangent modulus value could be employed
in incremental stress analyses, it has one significant shortcoming: the value

of tangent modulus, E is related to the strain, which has a completely

’
arbitrary reference s:ate. Because the reference state for strain is arbitrary,
and because stresses may be calculated more accurately than strains in many
rock mechanics problems, it seems logical to eliminate strain and express the
tangent modulus in terms of the deviator stress. The resulting equation for

the tangent modulus is:

. 2
i —é)” [] ] Rf(l - snn¢)(o] - 03)] (3-8)
t - p .

2 c cos¢ + 203 sing

The usefulness of Equation 3-8 results from its simplicity with regard

to two factors:

(1) Because the tangent modulus is expressed in terms of stresses
only, and not strains, it may be employed for analyses of
protlems involving arbitrary initial stress conditions without
any complications.

(2) The parameters involved in this relationship may be determined
readily from the results of conventional laboratory tests. The
amount of effort required to determine values of the parameters
K, n, and Rf is not much greater than that required to determine

values of ¢ and ¢.

To study the applicability of this stress-strain relationship to various 3
types of rock, and to determine values of the required parameters for these

materials, a review of published stress-strain information has been made. The
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results of this review are summarized in the following sections.

Nonlinear Modulus Parameters Under Triaxial “onditions

In a manner similar to that discussed previously, an extensive literature
survey was conducted to locate data on rock properties under triaxial test
conditions. In all, data were available for 87 different types of rocks;
consideration of the data available for one rock type tested at several
orientations yielded a total of 115 modulus values. Since several stress-strain
curves were analyzed to obtain each set of nonlinear modulus parameters, it can
be seen that at least several hundred stress-strain curves were analyzed; in
all cases, the empirical fit was good. It should be noted that a least squares
fit was employed in obtaining these values.

These data were gronped together genetically and were tabulated as shown
in Tables 3-7 through 3-10. Whenever sufficient data were available, the
full description, density, specific gravity, porosity, modulus number (K),
exponent (n), failure ratio (Rf), cohesion (c), angle of friction (¢) and range
of confining pressure were included. As can be seen, all of these data were
not available for all of the rock types.

Examination of these data, a summary of which is shown in Table 3-11,

indicates a number of general trends for the modulus parameters K, n and R,:

£

(1)  Hard, crystalline or homogeneous rocks of low porosity tend to
have high values of K and low values of n and Rf. The low n
value indicates that the modulus is little affected by confining
pressure while the low Rf value indicates stress-strain curves
which are close to beina linear.

(2) Porous, clastic or closely jointed rocks tend to have relatively
low values of K and relatively high values of n and Rf, indicating
substantial stress-dependency and nonlinearity.

(3) Anisotropic properties tend to be governed primarily by the value
of K while, for the most part, the values of n, Rf, ¢ and ¢ tend
to be quite consistent.

(4) Based upon the éQerage values shown in Table 3-11, it can be seen
that the average values of n and Rf are fairly consistent with each

other, while there is substantial variation in the K values.
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NUMBER OESCRIPTION ~ o < |w = & o §| L L TLLE REFERENCE
V\L” o V\L
IPT-1 | INADA BIOTITE GRANITE
(MEDIUM-GRATNED) 2.61| - 0.4 | 988, 0 0.72 [55.2 147.7 | 0.1-98 MOG) (18 34) i
IPT-2 | WESTERLY GRANITE = 2.61 - shh, | 0.03] - - - 0.1-160. | BIRCM (1966) E
3 IPT=-3 | STONE MT. GRANITE
| (MEDIUM-GRAINED) 2.6112.66 | 0.2 63.2] 0.19(0.18 |55.1 |51.0 ! 0-68.9 SCHWART2 (1964)
IPT-4 | AEC NEVADA SITE GRANITE
! (OLNSE, COARSE-GRA11iED, UNWEATHERED) 2,69 12.69 | 0.3 | 694. [ 0,01 |0.19 |22.1 |52.0 | 0-27.6 STOWE (1969)
IPT-% | QUART2 MON2ONITE
l (MEOYUM-GRAINED ,PORPHYRITIC) |
3 -5a 2.6812.70 | 0.2 | 789. | 0.01 [0.26 |36.9 |53.0 | 0-20.7 DEKLOT2 & HECK (1965)
- [ =5b1 (MUTUALLY PERPENDICULAR AXES) 2.69|2.69 | 0.2 | 884, | 0.0110.29 |40.3 |53.0 | 0-20.7
i -5¢ 2.68|2.68 | 0.2 | 878. | 0.01|0.27 |36.2 |56.0 {o0-27.7
1 ||PT-6 AEC NEVADA SITE QUART2 MON20NITE 2,66 | - 0.2 § B22. |-0.00 | - 27.6 [56.0 | 1.0-9.3 CORDING (1967)
| IPT=7 | UKIGANE DIORITE |
(VERY DEWSE ,MEDIUM-GRAINED) 3.09 | - 0.2 (101, 0 [0.70 |56.2 41,5 | 0.1-98, HOGI (1964)
IPT-8 | ORIKABE NUART2 DIORITE ]
. (FINE~GRAINED) 2,78 - 0.4 | 166.7| 0.14 1062 N76.0 {23.8 | 18.-250. |MOGI (1965)
TIpPT-9 ‘ NABE-ISHI HORNBLENDE PERIDOTITE | ]
1 {MEOIUM-GRAINED) 3.16 | - 0.02| 690. 0 U.48 | 63.0 [37.6 | '8.-250. {MOGI (1965) 4
[1PT10 | CEOAR CITY TOMALITE 16.5 [45.0 | 0-69,
| (FRIABLE,MEQIUM TO FINE-GRAINED) - 2.60 | h.9 | 242, | 0.G3 |0.32 [BB.2 [31.0 [ 69.-248 SAUCIER (1969)
| IPT-11 l CMEGA OIABASE = 3.04 - |1027. {o0.01 | - - - 0.1-100. | BIRCM (1966)
"'I + !
4 [1VT=1 | HOWARD PRAIRIE DAM BASALT 3 2.82 1 - |75, | 0.0 | - o ~ 0.1-100, [ BIRCH (1966) ’
3 1VT-2 | AEC NEVADA SITE BASALT 27.6 [64.0 | 0-3.4
1 (DEKSE ,F INE-GRAINEQ ,UNWEATHERED) 2.70 12.83 | h.6 | 286. | 0.05 |0.39 {66.2 {31.0 | 3.h-34.5 |STOWE (1969)
| IVT=3 " PANGUNA ANDESITE 0 |36.6 | 0-€.5
't (CLOSELY JOINTED) o = o 1.7] 1.15 |0.68 3.72133.4 | 6.5-41.4 | JAEGER (1969)
'|v1-h HONKOMATSU AUGITE ANDESITE !
(OENSE ,CLARSE TO FINE=GRAINED) 2,23 | - 9.9 | i54.0| 0 0.80 |20.6 |2B.2 | 0.1-145, |MOG) (1964)
IVT-5 | SMIROCHGBA PYROXENE ANOES!ITE 2,08 | - 5.1 | 269. 10.0310.65 |36.1 [35.3 [0.1-147. [Moc1 (1964)
| 1IVT=6 | SHIROCHOBA PYROXENE ANDESITE 2,45 | - 5.1 23.210.40 10.27 |35.0 139.5 | 2B8.-130. |MOGI (1965)
IVT=7 | SHINEOMATSU PYROXEME ANDESITE
(VERY PORPUS) 2,17 | - 12.6 | 388, 0 0.59 {72.4 [0 13.-10G6. | MoGI (1965)
IVT-8 | MI2UHO TRACHYTE
| (MASSIVE ,HOLOCRYSTALL INE) 2.2h | - 8.5 k3.010.26 [0.55 [56.0 |1R.h | 15,-200, |MOGI (1965)
1VT-9 | MIZUHO TRACHYTE I
| (MASSIVE HOLOCRYSTALL INE) 2,24 | - 8.7 | 165.8(0.02 {0.79 {27.4 [27.7 [0.1-147. |MO&I (196k)
IVT-10 . SAKU-1SHI AHOESITIC WELDED TUFF
' (POROUS) 1.95 | - 21.6 | 1n0.4] 0 n.23 |25.0 |0 10.-50, 10GI (1965) i
"IVT-11 1 AD-1SHI DACITE PUMICE TUFF 1
| (OENSE,FINELY LAMINATED) 2.00 | - 24,0 33.5] 0 u.5h {17.6 N19.bh j0.1-147. [MeG1 (1964) 1
IVT-12 | TATSUYAMA DACITE PUMICE TUFF s
(OENSE) 2.23 | - 1.2 | 241, 0 0.62 [38.7 [28.5 (0.1-147. [MOGI (1964)
{IVT=13 | 00YA-ISHI DACITE PUMICE TUFF
(MASSIVE,SLIGHTLY ALTERED) 1,45 | - 30.0 20.2 |-0.08 |0.57 2.6 [15.5 [0.1-147, 1MOGI (1964)
| JIVT=14 | TATSUYAINA DACITE PUMICE TUFF
i (DENSE,LAMINATED) 2.26 | - 10,2 | 274, 0 0.42 177.4 19.5 | 28.-200, [MOGI (1965)
; [ IVT=15 | AO-ISHI TUFF
g (MASSIVE ,FINELY LAMINATEO) 2.01 | - 17.3 [ 110.6 1 0.07 {0.51 |38.0 | 0.0 | 6.5-200., |MOGI (1965)
CIVT=16 | AEC NEVADA SITE TUFF
(FAIRLY WE!DED ASH,W=21.1%) 1.92 [2.39 19.8 36.010.08 [0.26 3.75 {22.5 [0-10.3 STOWE (1969) J

Note: | KN/M2 17100 BAR; 1/100 ATMOSPHERE; 1/100 TON/FTZ; 17100 KG/CMZ; 1/7 PSI

TABLE 3-7  TRIAXIAL STRESS-STRAIN PARAMETERS FOR
IGNEOUS (PLUTONIC AND VOLCANIC) ROCK TYPES
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z =z M 2 | X O o — - ~ T - ~ mZzZ
ROCK S 2 |S2 Rk Bl = 2] s 0o E Nalm
X - - Ll LI - I = m . 2 x - - x i1
{UMBER OESCRIPTION TS| Ry v 3| =732 2%35 2% REFERENCE
I | - v\:'-‘-, :. V‘L o
MFT-1 | SCHI .T0SE GNEISS
(FINE-GRAINED) ' 20,7 | 43.0 | 0-20.7
| (LTO FOLIATION) [ 2,79 2.80 | 0.5] 434, | 0.04 | 0,47 | 46.9 | 28.0 | 20.7-70. | OEKLOTZ ET AL (1965)
1 MFT-2 | SCHISTOSE GNEISS
(30" 10 FOLIATION) - 2.75 (1.9} 81. | 0.02 [ n.bn | 14.8 | 27.6 | n-69 OEKLOTZ ET AL (196€a)
| MFT-3  MLTTAWEE SLATE
(FINE-GRAINED) - - - 22.71 0,17 | 0.55 [ 46,6 | 47.6 | 0-203, HANOIN & HAGER (1957)
(ATO FALIATION) !
k. | MFT-4  TEXAS SLATE
! (FINE-GRAINED)
~he o (/7 T0 FOLIATION) - - - 166.2) 0.17 | 0.18 | 60.7 | 33.5 | 34.5-276.! McLAMORE (1966)
-4n | (10° TO FOLIATION) - - - 258.0{ 0.09 1 0.33 [51.7 | 28.5 | 34.5-276.
1 ~be | (20° 1O FOLIATION) - - - 25.71 0.34 | 0.35 (29.0 { 25.0 | 3h.5-276.
1 -kd[ (30" TO FOLIATION) - - - 98.6] 0.18 | 0.6t |26.2 | 21.0 | 34.5-276.
~he | (499 TO FOIATION) - - - 116.6] 0.14 | 0.52 | 35.2 | 19.0 | 34.6-276.
=4f | (50° TO FOLIATION) - - - 95.8| 0.18 | 0.8 | 52.4 | 15.0 | 34.5-276.
=hg | (607 TO FOLIATION) - - - 50.51 0.26 [ 0.59 | 53.8 | 20.0 | 34.5-276.
l -4h | (707 10 FOLIATION) - - - 23.8( 0.36 | 0.50 | 6k,1 | 22.5 | 3h.5-276.
4 -4t | (80 TO FOLIATION) 5 - - 50.6( 0.27 | 0.46 [ 67.0 | 2h.7 | 34.u-27€,
: =4j . (L TO FOLIATION) - - - 70.21 0.28 | 0.6) | 70.3 | 26.9 | 34.5-276.
| | | T
[MOFT-1 . S10ux ouAITZITE | |
(FINE-GRAINEOD) - - - 360. | 0.06 | 0.57 | 70.6 | 48.0 | 0-203. HANOIN & HAGER (1957)
MHFT=2  YAMAGUCHI MARBLE |
| (PURE,FINE-GRAINEO) 2,62, - 0.3} 538. 0 0.9 | 30,4 29.2{ 0.1-147 MOG1 (1964)
MHFT-3 | MITO MARBLE '
I | {LITTLE QUARTZ,MEOIUM-GRAINED) | 2.69| - 0.2 730. 0 0.84 | 22.8) 30.6 | 0.1-147, | MOGI (1964)
CMNFT-4 | YAMAGUCHI MARBLE
| (PURE , COARSE-RRAINED) 2,481 - 0.1 272. 0 0.83 | 22,2 | 27.8 | 0.1-147. | H0oG1 (1964)
MHFT=5 | WOMBEYAN MARBLE
i {COARSE-GRAINEO) |- - - 348. 0 - - - 0-100. PATERSON (1958)
MHFT-6  CARRARA MARBLE - - - 473, 0 - - - 0-320. HEARO (1967)
MNFT-7 | CENRGIA MARBLE 0 60.0| 0-5.6
i (CALCITIC,VERY OENSE) 2.69) 2.76 | 0.3 39.5] 0.14 | 0.43 | 21,2 25.3| 5.6-68.9 | SCHWARTZ (1964)
MNFT-8 | YULE MARRLE
(MEOIUN-GRAINED) - - - 240, 0 - - - 0.1-1013,] GRIGGS (1936)
MNFT=9  YULE MARBLE
I (MEOIIM-GRAINED)
=94 {LTN FOLIATION) S S 0 512, 0 0.67 [ 1.12| 35.3| a-101, HANOIN & HAGER (1957)
=9t (/7 TO FOLIATILN) - - - 287. 0 0.92 (14.6 36.4 | 0-203. HANOIN & HAGER (1957)
B [Mrm-lo] CABRAMURRA SERPENT INE - - - 585, 0 - - = | 100.-500.| RALEIGH & PATERSON (1965)

i Hote: 1 kn/M? = 17100 BAR; 17100 ATHOSPHERE; 1/100 TON/FT2 5 17100 Ko/CHZ; 1/7 psi

TABLE 3-8  TRIAXIAL STRESS-STRAIN PARAMETERS FOR
METAMORPHIC (FOLIATED AND NON-FOLIATED)
ROCK TYPES
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L3 LINEE
SCT-1 | STOCKTOK SHALE BRECCIA
| (WAXY TO EARTHY) 2.48 - 19.4 [ o0.26| - | 1.45 |36-50
SCT-2 | LEREA SANOSTCNE
| (MEOIUM-GRAINED,WELL-CEMENTED) - |2.66 [18.2 | 43.6 | 0.25|0.73 |27.2 |27.8
[SCT-3 | WEEK'S PSLAND SANDSTONE
| (MASSIVE ,HARD , FRIABLE , FINE -
H GRAINED,WELL-CEMENTED) - 3 - 5.96 | 0.39 [ 0.66 [55.2 |27.5
SCT-4 | DIL CREEK SANDSTONE
{ ! (MASS IVE ,VERY MARD,VERY FINE-
i GRAINED,WELL~CEMENTED) - - - 1.8 | 0.07]0.62 221 |uk.5
SCT-5 | BARTLESVILLE SANDSTDNE
(MASSIVE ,FINE-GRAINED, WELL-CEMENTED) - - - 58.6 | 0.27|D.64 | 8.0 [37.2
1 SCT-6 | POTTSVILLE SANDSTONE
(UNWEATHERED,ALMOST PURE SILICA) 2.28 | 2.64 |14.0 [106.0 | 0.07|D.25 {14.9 |45.2
"SET-7  HOISE SANDSTON: . |
(WELL-CEMENTED) [t.90]| - |27.0 {736 ! 0.i2| - | - -
SCr-8 | MASE SANDSTONE |
(UNTFORM, MED1 UM=GRAIHED) 269 | - 0.9 [135.4 l 0.08(0.62 |41.9 [41.5
[ScT-9 | MUTEMBERG SANDSTONE 5 - -7 P27 ooz - | - 5
[SCT-10 | BARNES SANDSTONE i
: (MASSIVE ,F INE-GRAINED, WELL-CEMENTED) | |
-10a{ (// To BEDDING) il - - 48,0 | 0.07|0.60 | 8.6 (34.D
-10b | (A TO BEDDING) - - - 62.4 | 0,10 D.52 | 6.2 [34.0
SCT-10 | REPETTO SILTSTONE [
(HARD,FISSILE ,DRY) - 2581 5.6 768 | o {0.55|3k.7 .32.1
[SCT-12 | REPETTO SILTSTOKE | |
| (MARD, F 1SS ILE, SATURATED) - |2.58 | 5.6 | 25.8 | 0.1610.72 (34,7 |32.1
SCT-13 | STOCKTDN NORTHVIEW SHALE ! |
I ' (DENSE,SILTY ,FINE-GRAIRED) | 2.47 | - - 2.07 | 0.23] - | n.69 |21.0 |
[SCT-14 | STOCKTDN SHALE
] (SOFT,WAXY) | 2.38| - - 4.06 | D.08 - 0.34 |22.0
5 |SCT-15 | MUODY SHALE |
: (HARD, F I:{E~GRAINED, DRY) - |2.67| 4.7 | 3.57) 0.43]0.36(35.4 |55.5
,SCT=16 | MUDDY SHALE
(HARD, F INE-GRAINED,SATURATED) - |2.67| 4.7 | 856 | 0.01{D.36(38.4 [14.4
“5CT-17 | 590D FODT SANDS FORMATION' SHALE
(I1ARD, F15S 1LE) - - - 94,6 { 0.12/0.78 [24.7 [23.8
SCT-18 | EDMONTON CLAY SHALE I
4 (W=202) o - o 0.18 | 0.80|0.55| 0.1 |28.0
5CT-19 | EDMONTON BENTONITIC SHALE
(W=30%) - - - 0.22| 0.68|0.78| 0.3 | 7.5
1$CT-20 | GREEN RIVER SHALE
- (MARD, CALCAREOUS ) :
! -20a| (// TO BEDDING) I - - 0.06 | 1.22/10.84| 0 |46.6
-20b | (LTO BEODING) L o] o [ o 54.9 | 0.11,0.81 {24.9 |22.6
50T-21 | GREEN RIVER SHALE-1 | |
(FINE-GRAINED,BRITTLE,CALCITHC &
DOLLHITIC, INTEROEDDED VITH KEROGEN) ! i
-21a| (// To BEDDING) d g - - 131.2 | 0.10/ 0.66|73.1 '29.0 !
-21b | {15° T0 BEOOING) 3 - - 92.5 | D.15( 0.64 [62.0 |30.0 |
-21c| (207 Tn BEDDING) - - - 115.6 | 0.08] 0.4 {53.8 [30.n
-21d | (30° TC BEDDING) - - - 85.0 | 0.14| 0.50 | bk.1 [30.5
-2le{ (452 TO BEDDING) |- - = 97.9 | 0.12}0.57|55.8 |30.5
=21f | (60" TO BEDDING) U 5 5 17.0 | o.11!0.49(53.3 !30.0
I -21a] (75° TO BEDDING) I o 5 o 61.8 | 0.21] 0.45|53.3 [30.5
: -2th| (LT0 BEDDING) - - 85.6 o.|3’ 0.36162.7 |35
|SCT-22 | GREEN RIVER SHALE-2 1
© (FINE-GRAINE /,PLASTIC,CALCITIC ¢ |
| DOLDMITIC, INTERBEDDED WITH KEROGEN) ‘
| -22a1 (// TO BEDDING) - - - 50.3 | 0.13, 0.64 | 4b.5 [21.0
-22b (107 TD BEDDING) - - - 67.3 | 0.0k| 0.74 | 41.4 |20.5
-22c (20" TO BEDDING) - - - 56.5 0.07} 0.75{34.5 |19.9
-22d| (30° TO BEDDING) - - - 29.9 0.11f 0.63(29.0 |18,
-27¢ ! (40° TO BEDDING) - - - 27,9 | 0.15| 0.65(31.7 [19.0
A -22f| (60° TO BEDDING) - - - 13.9 | 0.25/ 0.69|36.5 |20.6
-2211 (LT0 BEDDING) - - - 78.9 n.o%J_n.an 38.6 |20.7
' ST e = . — e L UL
wote: 1 KN/MZ s 17100 BAR; 17100 ATHOSPHERE: 17100 ToN/ET?; 17100 Kke/em?; 1/7 Psi

TABLE 3-9
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D.1-12.4

D-200.

0-203.

0-203.
0-203.
0-68.9
1.4-34.4
0.1-150.
0-243,
D-203.
0-203.
51.-203.
0-200,
0.8-4,1
0.8-4.1
0-203.
0-200.
D-203.
D.1-0.8
0.1-3.1

0-203.
0-203.

PEFERENCE

DEKLOTZ ET AL (1966b)

HANOIN ET AL (1963)

HANDIN & HAGER (1957)

HANDIN & HAGER (1957)

HANGIN & IIACER (1957)

SCHWARTZ (1964)

KING (1968)

HOSHINO & KDIDE (1970)
HEARD (1967)

HANOIN & HAGER (1957)

HANOIN & HAGER (1957)
HANDIN ET AL {1963)

OEKLOTZ ET AL (1966b)

DEKLOTZ ET AL (1966b)
HANDIN & HAGER (1957)

HANDIN ET AL {1963)

HANDIN & WAGER (1957)

SINCLAIR & BRDOKER (|967H

SINCLAIR & BROOKER (1967)

HANDIN & HAGER (1957)

McLAMDRE (3966)

McLAMORE (1966)
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I ~ o ow v |” z=x m] » = E =) npl X van
[2 ] Do Ql~ cO > > > (=] oz Z DO
| ROCK ol E3|w Z|x g2l 3 2 =I5 2 ael 3 D8
3 33T 5WFE] 5 ® gl 2 3n| MEZIR
HUMBL R DESCRIPTION T2 Sl S I @ z > m s. 'g 'g = S. ES g =4 REFERENCE
Vw “ 3 v\u
SCHT- | DEVONIAN L IMESTONE
(HETEROGENEOUS , COARSE-GRA INED) - - - 123.1 [0.12 | 0.96 |20.6 33.6 | 0-203. HANDIN & HAE'R (1957)
SCHT-2 FUSSELMAN LIHESTONE
(HETEROGENEOUS , COARSE -GRAINED) - - - 63.3 [0.20 1 0.60 {11.] 32.7 | 0-203. HANOIN & HAGER (1957)
ISCHT-3 | WOLF CAMP LIHESTONE
| (HETEROGENEOUS , FINE-GRA [NED) 1 = 3 77.8 [0.28 | 0.63 |23.6 34.8 | 0-203. HANOIN & HAGER (1957)
SCHT-4 HARIANNA L IHESTONE
(MASSIVE, FRIABLE ,DRY) = l2.70 3.0 |107.5 0 0.34 |26.8 26.4 | 0-203. HANOIN & HAGER (1957)
SCHT-5 | MARIANNA LIHESTONE
(MASS IVE ,FRIABLE , SATURATED) - |2.70 [13.0 59.9 ] 0.09 0.8 [12.6 37.6 | 0.3-h.h [HANDIN ET AL (1963)
SCHT-6 | WELLS STATION LIHESTONE
(HETEROGENEOUS , F INE-GRAINED) - - - 119 0 - - - 20.6-98. | PATERSON (1958)
SCHT-7 SOLENHOFEN LI1HESTONE
(HOMOGENEOUS) - = = 594, 0 - - - 0.1-1013.J GRIGGS (1936)
SCHT-8 SOLENHOFEN L IMESTONE
(HOHOGEMEOUS ,AT 25° ¢.) - - - 315, 0.06 - - - 0-500, HEARO (1960)
SCHT-9 | LIHESTONE - | 2.64 - 544, 0.02 - - - 0.1-100. {BIRCH (1966)
SCHT-10 | INDIANA LIMESTONE
(ooLiTIC) 2,20 (2.70 (19.4 44,5 | 0.18 | 0,54 6.72 | 42,0 0-9.6 SCHWART2 (1964)
29.6 7.0 ] 9.6-68.9
SCHT-1Y | CROWN POINT LIMESTONE - - - 52.1 | 0.25 | 0,58 |[86.0 21.3| 20.-180. | DONATH (1970)
SCHT-12 : AEC WEVAOA SITE LIMESTONE
! (DENSE, FINE-GRAINED) 2.70 [2.72 | 0.5 |7h2. 0.0 0.33 | 1h.5 ih,0| 0-27.6 STOWE (1969)
SCHT-13 ' BLAIR DOLOMITE
i ;. (HOMOGENEOUS ,F INE-GRAINEO) - - - 168.6 | 0.16 | 0.50 !35.9 20.0| 0-203, HANOIN & HAGER (1957)
{SCHT=-14  CLEAR FORK OOLOMITE
| (COARSE TO FINE-GRAINEO) - - - 196.5 | 0.22 | 0.39 {73.1 35.0 | 0-203. HANDIN & HAGER {1957)
,SCHT-IS FUSSELHAN ODLOMITE
(HETEROGENEOUS, F INE-GRAINEO, CALCITIC) - - - 86.9 | 0.26 | 0.60 |48.4 39.5 | 0-203, HANOIN ¢ HAGER (1957)
SCHT-16  GLORIETA DOLOMITE
i (METEROGENEOUS ,MEOIUM-GRAINEOD, CALCITIC) - - - 60.5 [ 0,29 [ 0.74 !25.8 35.0 1 0-203, HANOIN & HAGER (1957)
SCHT-17 | LUNING OOLOMITE |
(FINE-GRAINEO,CALCITIC) - - - 101.3 1 0.21 | 0.88 |23.7 34,0] 0-203, HANOIN & HAGER (1957) ;
SCHT~18 | HASMARK DOLMITE
(HOMNGENEOL ", DRY, COARSE -GRAINED) \
1821 (// TO FOLIATION) To[291 3.5 (1762 0010 1 0.86 | 23.1 | 32.1( 101.-203.| HANOIN & HAGER (1957) ; J
~18b; (LTO FOLIATION) c |29V | 3.5 |153.6] 0.13 | 0.81 |4s5.6 30.6 | 0-203.
SCHT-19 | HASMARK DOLOMITE !
(HOMOGENEOUS , COARSE-GRAINEO, SATURATED) - 2.9 | 3.5 88.0 ] 0.17 { 0.61 |22.8 35.51 0.8-5.9 | HANDIN ET AL (1963) ,
SCHT-20 ! STOCKTON DOLOHITE & DOLOMITE BRECCIA
(CALCAREOUS ,MEOIUH TO FINE-GRAINED) 2.56 - - 231.0 | 0.02 - 3.45 | 61.0] 0.05-12.4 OEKLOTZ ET AL (1966b) ' ;
SCHT-21 | STOCKTON OOLOHITE WITH SHALE SEAMS 1
(LAMINATED) 2,56 | - - 56.6 { 0.27 - 0.69| 51.0( 0.4-12.4 [ OEKLOT2 ET AL (1966b) i
SCHT-22 | STOCKTON DOLOMITE WITH STYLOLITES | !
! (CLAY~FILLEO) 2.56 | - - 68.9| 0.32 - 0.761 56.0| 0.8-b.1 [OEKLOT2 ‘T AL (1966b) | 1
SCHT-23 [ chack (952 CaCOJ) 1.6212.72 |40.,0 0.13 0.67 | 0.54 0 31.5( 10.-90. | DAYRE €T 4L {1970) P
scur-2h | pLaine ANHYORITE i b
(FINE-GRAINED) - - - 93.2) 0.10 | 0.78 | 43.4 29.4 | 0-203, HANDIN & HAGER (1957)
Wote: 1 KN/M® - 17100 BAR; 1/100 ATMOSPHERE; 17100 TON/FT2; 1/100 Ke/eHZ, 177 P3|
3

TABLE 3-10  TRIAXIAL STRESS-STRAIN PARAMETERS FOR :
SEDIMENTARY (CHEMICAL) ROCK TYPES
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\ ROCK TYPE I GNEOUS METAMORPH I C SEQIMENTARY
ALL
PARAMETER PLUTONIC VOLCANIC NON-FOL IATEO FOLIATED CLASTIC CHEMICAL
NO. VALUES 10 (8) 14 & | 6 6 41 (39)
DENSITY MAX | MUM 3.16 2.70 2.69 - 2.69 2.70 3.16
{cm/cm3) MINIMUM 2.61 1,45 2.48 = 1.50 1.62 1.45
AVERAGE 2.76 2.14 2.62 2,79 2,37 2.37 2.45
NO. VALUES 8 (6) 3 1 2 6 9 (8) 29 (26)
SHECIEIC MAX | HUM 3.0k 2.83 - 2.80 2.67 2.91 3.04
CRAVITY MINIHUM 2,60 2.39 . 75 2.58 2.64 2.39
AVERAGE 2.7 2.68 2.76 2.78 2.63 2.77 2.72
NO. VALUES 1 (9) 14 4 2 8 8 (7) 47 (4y)
MAX IMUM 4.9 30.0 0.3 1.9 27.0 4o.0 4o.0
GOROSITY MINIMUM 0.02 4.6 0.1 0,5 0.9 0.5 0.02
AVERAGE 0.7 13.5 0.2 1.2 10.1 12,0 8.0
NO. VALUES 12 (9) 17 (15) 8 (6) 14 (4) 35 {20) 22 {20) 108 (74)
COHESION, ¢
i MAX | MUM 176.0 77.4 70.6 70.3 73.1 86.0 176.0
(KN/szIO 3)
MINIMUM 16.5 0.0 0.0 14.8 0.0 0.0 0.0
AVERAGE 56.1 32.2 22.9 45,7 31.7 26.3 34.5
NO. VALUES 12 (9) 17 (15) 8 (6) 14 (&) 35 (20) 22 (20) 108 (74)
ANGLE OF MAX1MUM 56.0 64.0 60.0 47.6 55.5 61.0 64.0
FRICTION, ¢ MINIMUM 23.8 0.0 25.3 15.0 7.5 7.0 0.0
AVERAGE 45.6 24,7 36.6 27.3 29.2 35.9 32.0
HODULUS NO. VALUES 13 (1) 16 1 (10) 13 (&) 37 (22) 25 (24) 115 (87)
NUMBER, K MAX | MUM 1101.0 756.0 730.0 4340 161.8 742.0 1101.0
{x1073) MINIMUM 63.2 1.4 39.5 23.8 0.1 1.0 0.1
AVERAGE 683.9 181.4 398.6 134.,9 62.2 186.4 216.5
NO. VALUES 13 (11) 16 1 (10) 13 (4) 37 (22) 25 (24) 15 (87)
| EXPONENT, n MAX | MUM 0.19 1.15 0.14 0.36 1.22 0.67 1.22
HIHIMUM -0.01 -0.08 0.00 0.02 0.00 0.00 -0.08
AVERAGE 0.03 0.12 0.02 0.19 0.20 0.17 0.14
NO. VALUES 10 (8) 15 7 (&) 13 (L) 32 (17) 18 (17) 95 (67)
F41 LURE MAX | MUM 0.72 0.80 0.92 0.68 0.84 0.96 0.96
[ RATIO, R MINIMUM 0.18 0.23 0.43 0.18 0.25 0.33 0.18
L AVERAGE 0.40 0.52 0.74 0.49 .57 0.6k 0.56
Note: | KN/M2 = 17100 BAR; 1/100 ATMOSPHERE: 1/100 TON/FTZ; 1/100 ke/cMZ; 177 Psi

Numbers in parentheses Indlcate number of different rock types.

TABLE 3-11
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These general relationships and trends may provide a useful context for
interpreting the results of tests on other types of rocks and the average
values of the parameters may be useful for generalized studies or for
studies of a preliminary nature. For example, since the average n and Rf
values are fairly consistent, one could approximate the nonlinear, stress-
dependent behavior of a given rock type for preliminary purposes with
these values and the uniaxial modulus since the modulus at one atmosphere
is equal to Kp,. However, in view of the wide variation in the values

of the stress-strain parameters, it may be concluded that values of these

parameters for use in accurate analyses should be determined by conducting

the appropriate tests on suitably selected and prepared rock specimens.

Nonlinear Stress-Dependent Poisson's Ratio Relationship

In a manner consistent with the definition of tangent modulus discussed
previously, the tangent Poisson's ratio may be defined as the rate of variation

of radial strain with axial strain under axial compression or:
de
e r (3-9)
t 3¢
a

in which v¢ is the tangent Poisson's ratio, €, is the radial strain and €,

is the axial strain. Commonly it is found that the value of the tangent
Poisson's ratio is nonlinear as well as stress-dependent. Recently Kulhawy

et al (1969) proposed a simple, practical Poisson's ratio relationship for
soils and demonstrated its appiicability in soil mechanics problems. This
relationship was also formulated from empirical nonlinear and stress~-dependent
relationships and only includes parameters readily obtainable from conventional
laboratory shear tests with either radial or volumetric strain measurements,

In the following sections, this relationship is reviewed and its applicability

to rock is discussed.

a) Nonlinearity
Nonlinear relationships between axial and radial strains may be approximated
by an empirical hyperbolic equation of the form:

€
r
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in which f and d are parameters whose values are determined empirically.

If Equation 3-10 is rewritten as:

-§£-= f + dt:r (3-11)
a
it may be noted that the parameter f is the value of the ratio sr/e at
zero strain. Thus the parameter f is equal to the value of tangent Poisson's
ratio at zero strain, which herein is called the initial tangent Poisson's
ratio, v The parameter d is the slope of the line represented by Equation
3-11.

A study of the behavior of a variety of rock types conducted during the
course of this investigation has shown that the volume change characteristics
of rocks may be represented to a reasonable degree of accuracy by the
empirical relationship shown above. For example, data derived from tests
on Cedar City Tonalite are shown in Figure 3-4. 1t should be noted that all
of the curves for the different confining pressures are not presented in
this figure because many were close to each other and overlapped. Neverthe-
less, it can be seen that the hyperbolic and experimental curves are in good
agreement.

Although the empirical hyperbolic relationship may be used for any values
of Poisson's ratio, conventional finite element analyses may presently only
be performed for materials having values of Poisson's ratio less than one-
half. Therefore, if the value of Poisson's ratio determined from the laboratory
test results is greater than or equal to one-half, it is necessary to assign

a value slightly less than one-half for purposes of analysis.

b) Stress-Dependency
As shown in Figure 3-4, the variations of radial strain with axial strain
depend on the value of confining pressure as well as the value of strain.
Kulhawy et al (1969) found that the value of Vi (initial tangent Poisson's ratio)
tended to decrease with increasing confining pressure, with the value of Vi
being approximately linear with logarithm of confining pressure as shown below:
°3

v; = G - F log (—p';) (3-12)

T
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in which G is the value of v, at a confining pressure of one atmosphere,

03 is the minimum principal stress or confining pressure, P, is atmospheric
pressure expressed in the same units as Y and F is a parameter whose
value is determined empirically and which represents the rate of change of
v with increasing confining pressure. Figure 3-5 shows this variation

for two types of rock, a sandstone and a basalt, from which it can be seen
that these data can be represented to a reasonable degree of accuracy by a

straight line.

c) Tangent Poisson's Ratio
The relationships expressing nonlinearity and stress-dependency may be
used to define a value of tangent Poisson's ratio for any state of stress.
According to Equation 3-9, which defines the tangent Poisson's ratio:
dE
)4k a (3-13)

vt aE;r

By performing the indicated cifferentiation on Equation 3-10, the tangent

Poisson's ratio may be expressed as:

- f .
Ve T - db-a)é (3-14)

As shown previously, the parameter f is equal to Vi the value of tangent
Poisson's ratio at zero strain, which is related to confining pressure as
shown by Equation 3-12. Substituting Equation 3-12 into Equation 3-14 results
in the following expression:

. 0,./p
G - F log ("3'Va) (3-15)

2
(1 dea)
The axial strain may be eliminated from Equation 3-15 by expressing this
strain in terms of the stresses and stress-strain parameters, using
Equation 3-1 as follows:
(0, - 03)
Gy = = (3-16)
03)(1 - sing)

o . Rf(o] =
2c cos + 203 sing

3
KPa(B;Q ]
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When this equation is substituted into Equation 3-15, the tangent Poisson's

ratio may be expressed as:
G - F Iog (03/pa)

Vt = d(°| = 03) ?‘ (3"'7)

o (Sé) n{l ] Rf(oI - 03)(1 - sin¢);}

2c cos¢ + 203 sing

This expression contains eight parameters: The five modulus parameters K,
n, c, ¢, and Rf; and three additional parameters G, F, and d. The values of
all of these parameters may be determined from the results of a series

of triaxial or plane strain compression tests with volume change or radial
strain measurements. Studies conducted to determine value> of these para-

meters for various rock types are described in the following section.

Honlinear Poisson's Ratio Parameters Under Triaxial Conditions

Very little data were available in the literature which could be
employed to obtain the ronlinear and stress-dependent Poisson's ratio para-
meters discussed above. Table 3-12 shows these parameters for the eight rock
types available. Since one of these rock types had data available for three
test orientations, a total of 10 sets of parameters were obtained. Maximum,
minimum and average values of these parameters are shown in Table 3-13.
Analysis of these limited data shows that the variation in the values of d
are relatively small, indicating that the rate of increase of Poisson's ratio
with strain or stress level is similar for these rock types. The values of F
range from -0.05 to 0.05 indicating that the initial tangent Poisson's
ratio values may either decrease or increase 0.05 per log cycle of stress, a
factor which may or may not be significant depending upon the magni tude of
stress changes in a given field problem. However, six of the ten values
showed that there is little, if any, change of Poisson's ratio with confining
pressure. The largest and most significant variations occurred in the values
of G, the initial tangent Poisson's ratio at one atmosphere. These values
varied from 0.11 to 0.30, but it is interesting to note that the average of
these values, 0.20, is the same average obtained for Poisson's ratio under
uniaxial test conditions. Furthermore the data for the quartz monzonite
indicates that, at least for this rock, anisotropy of the Poisson's ratio para-

meters is relatively insignificant.
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NUMBER

POISSON'S RATIO PARAMETERS

PARAMETER OF MAXIMUM | MINIMUM | AVERAGE
VALUES
G 10 0.30 0.11 0.20
F 10 0.05 -0.05 0.00
d 9 194, 62. 15.
-TABLE 3-13  SUMMARY OF NONLINEAR TRIAXIAL




CHAPTER 4
ANALYSIS OF OPENINGS IN HOMOGENEOUS ROCK MASSES

Some types of rock masses may be treated as homogeneous continua from the
standpoint of analyzing the response of the mass caused by making an underground
opening. The rock masses commonly in this category are those composed of massive,
competent units in which prominent discontinuities are infrequent and do not inter-
sect the opening or pass near it, and, on occasion, those masses which are intensely
fractured to the extent that they may be statistically homogeneous. The response
of rock masses falling into these categories may be adequately evaluated in many
cases by using any of a number of closed form mathematical solutions covered in
many textbooks. (For example, see Obert and Duvall, 1967). Virtually all of
these solutions are based upen linear elasticity and, because of mathematical com-
plexities, are for smooth opening shapes in which there are no corners and for
initial stresses which are constant with depth, PBecause of these limitations,
other opening shapes or in-situ conditions must be analyzed by methods such as
photo-elastic experimental methods or finite element numerical methods.

Therefore, the studies presented in this chapter were conducted to evaluate
the behavior of underground openings in homogeneous rock masses for conditions
generally unavailable in closed form, to identify tre significance of the key
parameters controlling the behavior of an opening, and to provide a reference
base for later comparison of the behavior of openings in homogeneous rock with

those in rock containing a single planar discontinuity.

Finite Element Idealization

The finite element meshes employed in the studies conducted for this chapter
are shown in Figures 4-1 and 4-2 and in Figures 2-14 through 2-16 shown previously.
A1l of these meshes satisfy the criteria for mesh design discussed in Chapter 2.
Quarter, half and full meshes were used for the circular opening analyses depending
upon the symmetry of the cases analyzed. Somewhat more detailed results were sub-
sequently obtained for the quarter mesh analyses than the half mesh analyses which
in turn were more detailed than the full mesh analyses.

Excavations were mainly simulated in «ne step in these analyses although two
forms of three step excavation, as shown in Figure b-3, were simulated as well.
Slight variations from straight lires were made in the three step excavation meshes
to facilitate mesh design. Unless otherwise noted, the results to be discussed sub-

sequently in this chapter are tased upon one step excavation.
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FIG. 4-| FINITE ELEMENT MESH FOP
CIRCULAR OPENING IN

HOMOGENEOUS ROCK - QUARTER MESH
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272 ELEMENTS
285 NODAL POINTS

FIG. 4-2 FINITE ELEMENT MESH FOR CIRCULAR OPENING
IN HOMOGENEOUS ROCK - FULL MESH
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| STEP
EXCAVATION

3 STEP

HORIZONTAL
EXCAVATION

3 STEP
VERTICAL
EXCAVATION

FIG. 4-3 EXCAVATION SEQUENCES EMPLOYED
FOR ANALYSES OF CIRCULAR OPENING




Linear Material Properties

The theoretical solutions show that the stresses occurring around an opening
are independent of Poisson's ratio, but in the finite eltment method, the stresses
are dependent upon Poisson's ratio. To evaluate the magnitude of these effects,
analyses were conducted with constant initial stresses and with Poisson's ratio
varying from 0.10 to 0.40, the typical bounding values found in Chapter 3. No
analyses were conducted to evaluate modulus effects because the displacements are
inversely proportional to the modulus.

The stresses computed for these two bounding cases are shown in Figures L-4
and L4-5, plotted on a dimensionless basis with respect to the initial maximum
principal stress (o]i). OI? these and subsequent figures, K*represents the inftial
principal stress ratio, 5%%’ and 6 represents the orientation of the initial mini-
mum principal stress, 03, measured counterclockwise from horizontal. Figure 4=4
shows that the maximum principal stresses whick result are little affected by
variations in Poisson's ratio. Around the opening, the stresses are virtually
unaffected; at some depth beyond the opening the values with v = 0.1 are 5% to 10%
higher than those with v = 0.4, Figure 4-5 shows that the minimu. principal
stresses are consistently lowe~ when a higher value of Poisson's ratio is used.
These results occur because the changes in minimum principal stress caused by
excavation are greater with a higher value of Poisson's ratio, resulting in lower
final stress values. Although there are differences, it should be noted that in
all cases the differences are relatively small, particularly around the opening.

The displacements of the opening face are shown in Figure 4=6 for these two
cases along with those from an intermediate value of Poisson's ratio equal to 0.25,
These values have been made dimensionless with respect to the modulus (E), opening
radius (R), and initial maximum principal stress (o]i) for ease in comparison.
This figure shows that the largest crown and invert movements occur with the
smallest value of Poisson's ratio, but that the differences in the three cases

analyzed are quite small. Springline movements differ more and range from movemant

toward the opening center with a high value of Poisson's ratio to movement away from

the opening center with a low value of Poisson's ratio. This form of movement
occurs because there is more horizontal stress release from excavation for higher
values of Poisson's ratio and subsequently the springline movements will be greater

while the crown and invert movements will be less.

* - K values representing the stress ratio are always €I,
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INITIAL STRESSES
0. = 3.45 MN/m?

i

(=500 psi)
@ 0y 115 MN/m?

ia
CONTOURS OF or/0; FOR CIRCULAR OPENING |
IN HOMOGENEOUS LINEAR ROCK, K=|/3,020° :
(VARIABLE POISSON'S RATIO) |
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INITIAL STRESSES
0. = 3.45 MN/m?

(=500 psi)
@ 0y;= 115 MN/m?

FIG. 4-5 CONTOURS OF o;/o; FOR CIRCULAR OPENING
IN HOMOGENEOUS LINEAR ROCK , K=1/3,0=0°
(VARIABLE POISSON'S RATIO) |
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INITIAL STRESSES
0.z 3.45 MN/m?

li

ORIGINAL OPENING SHAPE (=500psi)
@ 0= 1.15 MN/m?

DISPLACEMENT SCALE

@ ‘ar Slg, 3k
[ el YL

FIG. 4-6 DISPLACEMENTS OF CIRCULAR OPENING
IN HOMOGENEOUS LIiNEAR ROCK,K=1/3,0=0°
(VARIABLE POISSON'S RATIO)
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The results of these cases indicate that, although the Poisson effects

are relatively small, any analyses should be conducted with representative
» values of Poisson's ratio; these values may be estimated from those presented
in Chapter 3. For purposes of subsequent analyses, the intermediate value of
v = 0.25 was selected, but it should be remembered that the results are not

independent of variations in Foisson's ratio.

Gravity Stresses

The available theoretical solutions are based upon a rock mass in which
the initial stresses are constant with depth. This stress state is compatible
with deep openings, but not with shallow openings. To evaluate the depth effect,
several analyses were conducted simulating the initial stress conditions in the
center of the opening for depths ranging from 100 feet to 1000 feet. Gravity
loading vertically was taken to be at the equivalent rate of one psi per foot of
depth and Poisson's ratio of 0.25 was used. To minimize the parameters to be
compared, the initial minimum principal stresses were set equal to zero so that
only the initial maximum principal stresses would vary significantly with depth.

The computed dimensionless o]/o r values are shown in Figures 4-7 through
4L-10. These figures show that the stresses along the opening boundary are little
affected by variations in the initial gravity stress conditions. But at more
than about one radius, the stress distribution is greatly affected with sub-
stantially higher stresses in the region below the opening. Comparing these
figures with Figure 4-11, in which the initial stresses are constant with depth,
it can be seen that the values of o for gravity logding are very similar and
differ by less than 10% for depths greater than about 500 feet. At depths
shallower than this, the values differ by progressively larger amounts, indicating
that gravity initial stresses should be included in the analysis,

Figures 4=12 and 4-13 show the dimensionless °3/°li values for gravity and
constant initial stresses from which it can be seen that the final 03/°li values
are essentially the same when K = 0. It should be noted that Figure 4-12 is
representative of the results from the four gravity stress solutions.

Figure 4-14 shows the dimensionless displacements for the gravity and constant

initial stress solutions and it can be seen that the displacements are essentially

the same at depths greater than about 500 feet.




MID - HEIGHT
INITIAL STRESSES

O;i = 0.69 MN/m?
(=100 psi)

@ 0y, = 0.0

VARIABLE WITH DEPTH

v=0.25

Y= 0.0226 MN/m®
(= | psi/ft)

FIG. 4-7 CONTOURS OF o; /o;;, FOR CIRCULAR OPENING
IN HOMOGENEOUS LINEAR ROCK , K=0 , 6=0°

(GRAVITY STRESSES, 100 FOOT DEEP)
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MID - HEIGHT
INITIAL STRESSES

o, = 2.07 MN/m?
(=300psi)

VARIABLE WITH DEPTH

v=0.25

Y = 00226 MN/m3
=1 psi/ft)

FIG. 4-8 CONTOURS OF 0~ /o, FOR CIRCULAR OPENING

IN HOMOGENEOUS LINEAR ROCK , K=0 , ©=0°
(GRAVITY STRESSES, 300 FOOT DEEP) |
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MID - HEIGHT
INITIAL STRESSES

0.=345 MN/m?

' (=500 psi)

VARIABLE WITH DEPTH

v =025
Y = 0.0226 MN/m’
(=~ | psi/ft)

FIG. 4-9 CONTOURS OF 0; /0, FOR CIRCULAR CPENING
IN HOMOGENEOUS LINEAR ROCK,K=0 ,8=0°
(GRAVITY STRESSES, 500 FOOT DEEP)
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MID-HEIGHT
INITIAL STRESSES

g, ¢ 6.90 MN/m*

(=10C0 psi )

VARIABLE WITH DEPTH

v =0.25

Y = 0.0226 MN/m®
(= | psi/ft)

FIG. 4-10 CONTOURS OF or/0;, FOR CIRCULAR OPENING

bl i L

IN HOMOGENEOUS LINEAR ROCK, K=0 , 8=0°
(GRAVITY STRESSES , I000 FOOT DEEP)
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INIT:~l. STRESSES

q.= 3.45 MN/m?
(=500 psi)

FIG. 4-1l  CONTOURS OF o /0;, FOR CIRCULAR OPENING
IN HOMOGENEOUS LINEAR ROCK, K=0 ,©0=0° 1
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MID -HEIGHT
INITIAL STRESSES

g, =3.45 MN/m?

(=500psi)

VARIABILE WITH DEPTH

vV = 0.25

Y =0.0226 MN/m’
(=1 psi /ft)

FIG. 4-12  CONTOURS OF o; /o;, FOR CIRCULAR OPENING
IN HOMOGENEOUS LINEAR ROCK , K20 , 9=0°
(GRAVITY STRESSES, 500 FOOT DEEP)
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FIG. 4-13 CONTOURS OF 0;/0;; FOR CIRCULAR OPENING
IN HOMOGENEOUS LINEAR ROCK , K=0 » 0=0°
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INITIAL STRESSES

g = 345 MN/m?
=500 psi)

V=025
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MID - HEIGHT
INITIAL STRESSES

ORIGINAL OPENING SHAPE %

e

VARIES WITH DEPTH
FOR CASES 2-5

Y =0.0226 MN/m°
(=1 psi/ft)

v =0.25

DISPLACEMENT SCALE

0 "l i e

| | | i1
CASE | 2 3 atadls o
SYMBOL —— —— |7 *—*—| — — "~| APPROX. EQUAL TO |
DEPTH (FEET) ALL 100 300 . 500 1000
o (MN/md) ALL 0.69 2.07 345 6.90
oy (MN/m?) 0.0 0.0 0.0 0.0 0.0

FIG. 4-14 DISPLACEMENTS OF CIRCULAR OPENING |
IN HOMOGENEOUS LINEAR ROCK ,K=0,0=0° :

(GRAVITY AND CONSTANT INITIAL STRESSES)
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Varying Initial Stresses and Orientations

The magntudes and orientations of the in-situ stresses found in rock
masses vary over a wide range. In columnar basalts, the lateral stresses may
approach zero while in major tectonic belts the lateral stresses may be two or
more times the vertical stresses. To investigate the effect of these variable
initial stress conditions, several analyses were conducted in which the ratio
of horizontal to vertical initial stress varied from zero to two; the vertical
stresses were held constant at 3.45 MN/m2 (=500 psi) and a Poisson's ratio of
0.25 was used.

Figures 4=15 through 4-18 show the results of these solutions, Since the
initial stresses are constant with depth, two symmetry planes develop and sub-
sequently it is only necessary to show a quarter circle representation of the
stresses. These figures show that, except for the isotropic case, the dimersion-
less 0y contours are similar in form, but that the maximum stress concentration
occurs in the same plane as the initial minimum principal stress, °3i' These
figures also show that slightly greater stress concentrations occur with lower
K values.

The variations in the dimensionless 03 contours are much more pronounced.
The resulting values range from large tension values to relatively high com-
pression values, with the largest compression values occurring for the highest
K values. It can be seen that tension only occurs when the K value is less than
1/3, a value less than that which is normally found in-situ.

The dimensionless displacements for these four cases are shown on Figure
4-19 which shows that face movements are greatly affected by the initial stress
values. The inward movements of the crown and invert increase proportionately
as the ratio of horizontal to vertical stresses decreases. Wall movements vary
in an inverse manner, with the greatest inward movement occurring when the hori-
zontal stresses are greatest. Essentially no wall movement oc-urs when oH/ov =
1/3 and outward movement occurs when oH/ov is less than 1/3,

When the initial strasses are oriented at angles other than horizontal or
vertical, the solutions just presented can be used by rotating the axes to
correspond to the orientation of the oblique initial stresses. tiowever, this
procedure is only applicable when homogeneous, linear, elastic, isotropic
materials are considered and when the initial stresses are constant with depth,

For other conditions an appropriate analysis must be conducted. It should be
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INITIAL STRESSES
0, = 3.45 MN/m?

(=500psi)

V=025

FIG. 4-15 STRESS CONTOURS FOR CIRCULAR OPENING -
IN HOMOGENEOUS LINEAR ROCK,K=0 ,©=0° ;
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INITIAL STRESSES
o), =3.45 MN/m?

(=~500psi)
@ 0= 1.15 MN/m?

a /o,

FIG. 4-16 STRESS CONTOURS FOR CIRCULAR OPENING

IN HOMOGENEOUS LINEAR ROCK , K=1/3 , ©=0° %
=180u- ’
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G, /0;

03 /ol-i

INITIAL STRESSES
o, = 3.45 MN/m?

(=500 psi)
@ 0,2 3.45 MN/m?

v =0.25

FIG.4-17 STRESS CONTOURS FOR CIRCULAR OPENING

IN HOMOGENEOUS LINEAR ROCK, K=| ,©=0°
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INITIAL STRESSES
Oy; = 3.45 MN/m?

(=500 psi)
@ 0} = 6.90MN/m?

g, /o;

V=025

—04 05

S

l----""'""

FIG. 4-18 STRESS CONTOURS FOR CIRCULAR OPENING
IN HOMOGENEOUS LINEAR ROCK,K=1/2,0=90°
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INITIAL STRESSES
ORIGINAL OPENING SHAPE 0, = 3.45 MN/m?

=500psi)

v=0.25

i ‘_‘_ﬂ : DISPLACEMENT SCALE

0 I L v2hip, IRAE
| . i Sl IR
CASE i 2 3 4
SYMBOL T 9 = 0 le=o e ey [ S e e —X —x—
O‘H/G'V 0 /73 | 2

FI. 4-19 DISPLACEMENTS OF CIRCULAR OPENING
IN HOMOGENEOUS LINEAR ROCK
(VARIABLE INITIAL STRESSES)
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noted that, in terms of finite element analyses, when the initial stresses

are oblique, a full circular mesh such as that shown in Figure 4-2 must be

employed. |If a half circle mesh such as that shown in Figure 2-14 is used,

the results will be in error btecause the modeled system is unsymmetrical with

regard to the initial stresses and subsequently the boundary conditions will
adversely affect the results.

A typical example showing the results when the initial stresses are

oriented at 45° is shown in Figures 4-20 and 4-21. This solution is com-

parable to that shown in Figure 4-16 with the only difference being the initial

stress orlentation. The contours obtained from the full mesh are slightly

different because the full mesh has 272 elements while the guarter mesh has

130 elements, or an equivalent 520 element full mesh; subsequently the full

mesh accuracy is slightly less than that for the quarter mesh.

To determine whether the 500 foot depth criteria for gravity and constant

initial stress compatibility would still be applicable for oblique initial

stress orientations, an analysis was conducted under gravity loading for the

same case shown in Figures 4-20 and 4-21. Figures 4-22 and 4-23 show the results

of this analysis. Comparison of the two cases shows that the stresses are

essentially the same around the opening, but that there are small differences at

more than about two to three radii from the opening center. However, these

differences are generally less than 10% so it may be said that, from a practical

standpoint, the 500 foot depth compatibility criteria is also applicable for

oblique initial stress orientations.

Opening Shape

To determine the effect of opening shape on the resulting stresses and

displacements, a series of analyses were conducted on typical horseshoe and power

station opening shapes. The horseshoe opening is 5.5 meters high with a base of

5.5 meters and the power station opening is 30 meters high, 20 meters base width
and 25 meters wide at the base of the crown arch. The finite element meshes for
these two openings are shown in Figures 2-15 and 2-16. The values used in these
analyses were: Poisson's ratic = 0.25, initial vertical stress = 3.45 MN/mZ, and

initial horizontal stresses = 1/3, | and 2 times the initial vertical stress.

a) Horseshoe Opening

Figures 4-24 through 4-26 show the dimensionless 0, values for the horseshoe

opening with the three initial stress conditions. These figures show that the
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INITIAL STRESSES

0, = 3.45 MN/m2
(=500psi)

) _ 2
;= |.I5MN/m

FIG. 4-20 CONTOURS OF O, /0; FOR CIRCULAR OPENING
IN HOMOGENEOUS LINEAR ROCK ,K=1/3,0 =245°
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| INITIAL STRESSES

o, = 3.45 MN/m?
' (=~500psi)

0y, 1.I5MN/m?
!..

0.3

FIG. 4-21 CONTOURS OF 0,/0; FOR CIRCULAR OPENING
IN HOMOGENEOUS LINEAR ROCK , K=|/3, @ =45°
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MID -HEIGHT
INITIAL STRESSES

0, = 3.45 MN/m?
(=500psi)

| 0y;= 1.ISMN/m®

VARIABLE WITH DEPTH

v =0.25

Y =0.0226 MN/m°
(== psi/ft)

FIG. 4-22 CONTOURS OF O; /o, FOR CIRCULAR OPENING

IN HOMOGENEOUS LINEAR ROCK ,K=1/3, © =45°
(GRAVITY STRESSES, 500 FOOT DEEP)
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MID -HEIGHT
INITIAL STRESSES

o. = 3.45 MN/m®
W (2500psi)

N\ :ﬁ. Oyi= l.l'faMN/m2

VARIABLE WITH DEPTH

v =0.25

y =0.0226 MN/m> :
(= psi/ft)

FIG. 4-23 CONTOURS OF 0;/0;, FOR CIRCULAR CPENING
IN HOMOGENEOUS LINEAR ROCK , K=1/3, 0 =45°

(GRAVITY STRESSES, 500 FOOT DEEP)




INITIAL STRESSES
0, = 3.45 MN /m?

(=500psi)
@ Oy= 1.15 MN/m?

FIG. 4-24 CONTOURS OF G /o;. FOR HORSESHOE
IN HOMOGENEOUS I.INEAR ROCK,K=1/3,0=0°




INITIAL STRESSES
0}, = 3.45 MN/m*

(=500 psi)

@ Oy;= 3.45 MN/m?

v =0.25

FIG. 4-25 CONTOURS OF 0,/ 0. FOR HORSESHOE
IN HOMOGENEOUS LINEAR ROCK,Ks=|,8=0° 1

L. $O._




INIT-AL STRESSES
Oy;= 3.45 MN/m?

=5000psi)
@ o, = 6.90 MN/m?

FIG. 4-26 CONTOURS OF 0/, FOR HORSESHOE
IN HOMOGENEOUS LINEAR ROCK ,K=l/2,0=90°
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resulting stresses are very similar to those for the circular opening, except
within about one equivalent ''radius'' of the opening face. Within this zone,
a stress concentration is developed at the lower horseshoe corner, with the
largest value occurring under isotropic initial stresses and the lowest value
occurring when the horizontal stresses are twice as great as the vertical.
The crown stresses follow the same pattern as those for the circular opening,
i.e., the stresses increase as the initial lateral stresses increase.

Figures 4-27 through 4-29 show the dimensionless 0y values for the same
three cases. The resulting stresses are again very similar to those for the
circul<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>